4.6 Article

Polymer-bonded CdTe quantum dot-nitroxide radical nanoprobes for fluorescent sensors

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 57, Issue 34, Pages 16258-16279

Publisher

SPRINGER
DOI: 10.1007/s10853-022-07640-8

Keywords

-

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [119M113]

Ask authors/readers for more resources

A novel functional polymer-bonded quantum dots (QDs)-nitroxide radical complex was demonstrated and investigated for its potential as a fluorescent sensor structure.
A novel functional polymer-bonded quantum dots (QDs)-nitroxide radical complex was demonstrated. In the first part of the study, the synthesis of polymer thin films via initiated chemical vapor deposition (iCVD), functionalization of polymer thin films with amine functional groups, and attachment of QDs to polymer surface were demonstrated. Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy together with fluorescence spectroscopy studies revealed that aliphatic primary amine (propylamine) was very effective for the functionalization of iCVD deposited poly(glycidyl methacrylate) (pGMA) and its copolymer with diethylaminoethyl methacrylate (p(GMA-co-DEAEMA)) and also QD attachment to functionalized polymer surface. In the second part of the study, the synthesis and attachment of Quantum Dot-4Amino TEMPO (QD-4AT) nanoprobes to functionalized pGMA thin films and feasibility of using them as fluorescent sensor structures were investigated. It was found that high initial 4AT concentration and long (24 h) interaction times are beneficial for nanoprobe synthesis. Electron paramagnetic resonance (EPR) spectroscopy analysis revealed the existence of covalent bond between QD and 4AT when 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide was used during synthesis. EPR analysis together with fluorescence microscopy investigation confirmed the successful attachment of nanoprobes to polymer surface. Time-depended fluorescence quenching analysis revealed that more than 50% reduction in fluorescence intensity within 15 min demonstrating the potential of polymer bonded QD-4AT nanoprobes in various sensor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available