4.7 Article

Amidoxime functionalized PVDF-based chelating membranes enable synchronous elimination of heavy metals and organic contaminants from wastewater

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 318, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.115643

Keywords

Water pollution; Adsorption; Organic-metal interaction; Environmental protection

Funding

  1. Natural Science Foundation of Liaoning Province [20180550429]

Ask authors/readers for more resources

The amidoxime functionalized PVDF-based chelating membrane showed high removal efficiency for heavy metals such as Cu2+ and Pb2+, but lower efficiency for Cd2+ due to physical adsorption. It also exhibited high rejection efficiency for proteins like BSA and lysozyme, making it a potential candidate for wastewater treatment applications.
Aiming at the synchronous elimination of heavy metals and organic contaminants from wastewater, the amidoxime functionalized PVDF-based chelating membrane was fabricated in this study. The structure and morphology of the chelating membrane were characterized using infrared spectroscopy (FT-IR), nuclear magnetic resonance spectrometer (NMR) and scanning electron microscopy (SEM). The SEM results show that the chemical modification with amidoxime groups did not damage the structure of the PVDF-based membrane. The chelating membrane has a high removal efficiency for Cu2+ (77.33%) and Pb2+ (79.23%) owing to the chemisorption through coordination bonds. However, the chelating membrane exhibits a low removal efficiency for Cd2+ (29.88%) due to the physical adsorption. The chelating membrane has a high rejection efficiency of BSA (95.17%) and lysozyme (70.09%), which is attributed to the sieving effect and increased hydrophobicity. Furthermore, the membrane performance for simultaneously removing metals and proteins from simulated wastewater was examined. The interaction of metal ions with proteins (BSA and lysozyme) can enhance the ion removal efficiency of the chelated membrane, but decrease the protein rejection efficiency due to the destructive effect. The amidoxime functionalized PVDF-based chelating membrane has a high potential for application in wastewater treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available