4.7 Article

Effective removal of sodium ion as efflorescence at soil surface using ammonium salts

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 320, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.115842

Keywords

Ammonium hexacyanoferrate (II); Ammonium perchlorate; Saline-sodic soil; Reclamation; Exchangeable sodium percentage

Ask authors/readers for more resources

This study evaluated the possibility of using ammonium hexacyanoferrate (II) (AH) and ammonium perchlorate (AP) to harvest excessive salts from saline-sodic soils. The results showed that the application of AH and AP effectively increased the concentration of salts on the outer surface of the soil, leading to improved pH and decreased exchangeable sodium content. This technique is particularly useful for reclamation of saline-sodic soils in arid climates.
The existing methods for reclamation of saline-sodic soils are expensive, time-consuming, and require skilled engineering approaches. Therefore, new and fast techniques should be developed for the reclamation of these soils. This study was undertaken to evaluate if harvesting excessive salts via the soil with ammonium hexacyanoferrate (II) (AH) and ammonium perchlorate (AP) [0, 10, 20 and 40 mmol kg 1] is possible through dendritic crystal growth above the soil surface. Application of crystallization inhibitors increased the concentration of salts on the outer surface and thereby increased pHe at the top of the soil. Whereas the pHe of 0-5 cm layers were obtained as 7.30, 7.36 and 7.84, it increased to 9.94, 9.84 and 8.45 in 15-20 cm layers with 10, 20 and 40 mmol kg(-1) AH application doses, respectively. Except for 5-10 cm of control and 10 mmol kg(-1) AP application, the lowest pHe values were obtained from the 0-5 cm and gradually increased from bottom to top. For all AH and AP application doses, the highest electrical conductivity (ECe) values were obtained from the 15-20 cm and significantly increased from bottom to top. Application of AH and AP have transformed exchangeable Na+ to water-soluble Na+ and this situation has caused an increase in the concentration of watersoluble Na+ throughout the soil column. AH and AP applications have decreased exchangeable sodium percentage (ESP) in all of the layers. Whereas the ESP of control was 70.07% in 0-5 cm layer, it decreased to 62.44, 55.63 and 53.76% with 10, 20 and 40 mmol kg(-1) AH application doses, respectively. Similar decreases were obtained for 5-10, 10-15 and 15-20 cm layers. Results obtained have shown that application of AH and AP to saline-sodic soil is an effective reclamation material to remove salts from soil surface within a short time, particularly in arid climates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available