4.7 Article

Electrochemical noise analysis to evaluate the localized anti-corrosion properties of PP/graphene oxide nanocomposite coatings

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 921, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2022.116665

Keywords

Electrochemical noise; Organic coating; Shot noise theory; Graphene oxide; Hilbert spectrum

Ask authors/readers for more resources

Electrochemical noise analysis was used to evaluate the localized anti-corrosion performance of polypropylene-based nanocomposite coatings. The results showed that the addition of graphene oxide nanoparticles can enhance the protective effect of the coatings and reduce the occurrence of pitting corrosion.
Electrochemical noise analysis was applied to evaluate the localized anti-corrosion performance of polypropylene (PP)-based nanocomposite coatings (NCC). In this regard, the NCCs were developed on mild steel from a solution containing PP, MAH-grafted PP, and different percentages of graphene oxide (GO). The coated samples were subjected to thermal tests, salt spray, and electrochemical noise (EN) analysis. Electrochemical potential and current noise (EPN & ECN) signals were evaluated to find information about localized corrosion. First, the raw signals were analyzed based on the empirical mode decomposition (EMD), then the 3D diagrams (intensity, time, and frequency) were plotted using the Hilbert transform. The results showed in the presence of GO, the transients shift to the higher frequencies at all times, which confirms more tendency to uniform corrosion instead of localized. Introducing 3 wt% of GO NPs into the coating leads to the electrochemical noise resistance increasing by 5 times (>10(8) Omega.cm(2)), pit initiation rate decreasing, and pit radius reduction (by similar to 5 times). As a result, MAH-grafted PP and GO in these NCCs can act as effective barriers against corrosive agents, especially the agents that cause pitting corrosion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available