4.5 Article

Mechanical properties of welded ultrahigh-strength S960 steel at low and elevated temperatures

Journal

JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
Volume 198, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jcsr.2022.107517

Keywords

Ultrahigh -strength steel; MAG welding; Laser welding; Welding heat input; Tensile test; Heat -affected zone

Funding

  1. Business Finland for the FOSSA project [5397/31/2021]
  2. Tauno Tonning Foundation

Ask authors/readers for more resources

The effects of welding heat input and operating temperature on the properties of welded ultrahigh-strength steel were studied, and a predictive model was proposed for designers to create safer engineering design solutions.
New ultrahigh-strength steels have been developed to meet the need for better performance, load bearing capacity, safety and weight saving. However, the design guidelines are incomplete, especially regarding the design of welded ultrahigh-strength steel components in fluctuating operating conditions. This reduces usability and can cause serious safety risks when the welded structures are in use. The heat input and cooling rate have a significant effect on the microstructure and mechanical properties of the ultrahigh-strength steels. Therefore, a model to predict the strength and microstructure, based on welding parameters, is required for designers to create safer solutions in engineering design. In this study, a 6 mm thick S960 low alloy ultrahigh-strength steel was welded using gas metal arc welding (MAG) and laser welding. The effects of welding heat input and operating temperature on the tensile properties, hardness, microstructure, and fracture mechanism of the welded specimens were investigated. The effects of operating temperature on the mechanical properties of welded joints were investigated by performing tensile tests between temperatures of -80 degrees C and + 400 degrees C. The unwelded base material was also tested in the same temperature range. The results showed a ductile fracture mechanism in all the samples regardless of the test temperature and welding heat input. However, the tensile strengths and elongations increased when the test temperature drops to -80 degrees C from room temperature. In addition, mathematical predictions for the strength and elongation properties, and grain sizes in heat-affected zones, as a function of temperature and welding heat input were proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available