4.7 Article

Physics-informed neural networks for inverse problems in supersonic flows

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 466, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2022.111402

Keywords

Extended physics -informed neural networks; Entropy conditions; Supersonic compressible flows; Inverse problems

Funding

  1. OSD/AFOSR MURI grant [FA9550- 20-1-0358]
  2. Alexander von Humboldt fellowship

Ask authors/readers for more resources

Accurate solutions to inverse supersonic compressible flow problems are crucial for designing specialized aerospace vehicles. We employ physics-informed neural networks (PINNs) and its extended version, XPINNs, to tackle these challenging inverse problems.
Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider the problem where we have data available for density gradients from Schlieren photography as well as data at the inflow and part of the wall boundaries. These inverse problems are notoriously difficult, and traditional methods may not be adequate to solve such ill-posed inverse problems. To this end, we employ the physics-informed neural networks (PINNs) and its extended version, extended PINNs (XPINNs), where domain decomposition allows to deploy locally powerful neural networks in each subdomain, which can provide additional expressivity in subdomains, where a complex solution is expected. Apart from the governing compressible Euler equations, we also enforce the entropy conditions in order to obtain viscosity solutions. Moreover, we enforce positivity conditions on density and pressure. We consider inverse problems involving two-dimensional expansion waves, two-dimensional oblique and bow shock waves. We compare solutions obtained by PINNs and XPINNs and invoke some theoretical results that can be used to decide on the generalization errors of the two methods.(c) 2022 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available