4.7 Article

Electrochemical activation-induced surface-reconstruction of NiOx microbelt superstructure of core-shell nanoparticles for superior durability electrocatalysis

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

MIL-96-Al for Li-S Batteries: Shape or Size?

Pengbiao Geng et al.

Summary: Metal-organic frameworks with controllable shapes and sizes, specifically MIL-96-Al crystals in hexagonal platelet, hexagonal bipyramidal, and hexagonal prismatic bipyramidal shapes, were prepared successfully using cosolvent methods. The shape and particle size of the MOF crystals were found to influence the adsorption of lithium polysulfides, impacting the initial capacity in Li-S batteries. These findings suggest a new strategy for designing sulfur hosts in Li-S batteries.

ADVANCED MATERIALS (2022)

Review Chemistry, Physical

Metal-Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage

Yang Bai et al.

Summary: Metal-organic frameworks (MOFs) are a promising material with diverse composition, high porosity, tunable pore structure, and versatile functionality. Integrating MOFs with functional materials can greatly enhance their efficiency and stability in photochemical and electrochemical energy conversion and storage (ECS).

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Multidisciplinary

Controllable Synthesis of COFs-Based Multicomponent Nanocomposites from Core-Shell to Yolk-Shell and Hollow-Sphere Structure for Artificial Photosynthesis

Mi Zhang et al.

Summary: In this study, a strategy called metal organic framework-sacrificed in situ acid-etching (MSISAE) was developed for the continuous synthesis of COF-based nanocomposites, including core-shell, yolk-shell, and hollow-sphere structures. One of the obtained samples with special three components showed high photocatalytic CO2-to-CO conversion efficiency in the gas-solid mode. This strategy allows for precise morphology design and control of multicomponent hybrid composites based on COFs, potentially leading to the development of porous crystalline materials with powerful superstructures for multifunctional catalytic reactions.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst

Yi-jin Wu et al.

Summary: The study shows that defects, specifically cationic vacancy defects, can enhance the electrocatalytic performance of NiFe-LDH for the oxygen evolution reaction (OER). These defects evolve with increasing applied voltage, influencing the surface reconstruction process of NiFe-LDH.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors

Yang Bai et al.

Summary: MXenes have been studied for their potential as supercapacitors due to their conductivity, density, and hydrophilic nature. Ti3C2-Cu/Co hybrids were synthesized and characterized, showing promising pseudocapacitive behavior and stability for applications in supercapacitors. This work provides insights into the design and application of MXene-based materials for energy storage devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

TM LDH Meets Birnessite: A 2D-2D Hybrid Catalyst with Long-Term Stability for Water Oxidation at Industrial Operating Conditions

Zhuwen Chen et al.

Summary: Efficient noble-metal free electrocatalyst for oxygen evolution reaction (OER) is crucial for large-scale hydrogen production via water splitting. By designing an electrostatic 2D-2D assembly route, researchers successfully synthesized a LDH(+)-Birnessite(-) hybrid catalyst with advanced catalytic activity and excellent stability under industrial hydrogen production conditions. Experimental and computational results show that shifting Fe-3d orbitals in LDH significantly enhances the electron transfer process during OER, leading to improved performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity

Yaming Hao et al.

Summary: NiFe oxyhydroxide is a promising catalyst for oxygen evolution reaction (OER) in renewable hydrogen production. By utilizing in situ reactive probes, it was found that oxygen atom transfer probes efficiently inhibited OER kinetics, pointing towards a new direction for optimizing NiFe-based OER electrocatalyst.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

Rapid Synthesis of Various Electrocatalysts on Ni Foam Using a Universal and Facile Induction Heating Method for Efficient Water Splitting

Guowei Xiong et al.

Summary: Electrocatalytic water splitting for hydrogen production is proven to be effective using high-frequency induction heating to rapidly prepare various self-supported electrocatalysts. The synthesized materials show low overpotentials and stability in alkaline conditions, enabling efficient hydrogen evolution and oxygen evolution reactions.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Ordered Macroporous Superstructure of Nitrogen-Doped Nanoporous Carbon Implanted with Ultrafine Ru Nanoclusters for Efficient pH-Universal Hydrogen Evolution Reaction

Yu-Lin Wu et al.

Summary: This study has developed an ordered macroporous superstructure of N-doped nanoporous carbon anchored with ultrafine Ru nanoclusters for electrocatalytic micro/nanoreactors, showing unparalleled performance for pH-universal hydrogen evolution reactions. The superstructure exhibits significantly higher mass activity compared to the benchmark Pt/C, with remarkably low overpotential and ultra-high turnover frequency in alkaline solution.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Facile Access to an Active γ-NiOOH Electrocatalyst for Durable Water Oxidation Derived From an Intermetallic Nickel Germanide Precursor

Prashanth W. Menezes et al.

Summary: In this study, intermetallic nickel germanide (NiGe) was identified as a superior Ni-based electro(pre)catalyst for the oxygen evolution reaction (OER) with enhanced catalytic activity and durability. Compared to other Ni-based intermetallic precatalysts under alkaline OER conditions, NiGe showed unexpected electroconversion into gamma-(NiOOH)-O-III with intercalated OH-/CO32- that served as a highly active structure.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Regulating the Local Charge Distribution of Ni Active Sites for the Urea Oxidation Reaction

Liping Wang et al.

Summary: A tungsten-doped nickel catalyst (Ni-WOx) was developed with superior activity towards the urea oxidation reaction, accelerating the reaction kinetics and increasing the turnover frequency. Experimental results demonstrated that tungsten doping led to the formation of Ni3+ sites with superior activity, facilitating the catalytic reaction.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Direct Probing of the Oxygen Evolution Reaction at Single NiFe2O4 Nanocrystal Superparticles with Tunable Structures

Xiaoxi Lu et al.

Summary: The study directly measures the oxygen evolution reaction in single self-assembled superparticles and shows that the NiFe2O4 superparticles' TOF depends on their diameter, while the incorporation of Au nanocrystals significantly increases the TOF, leveling off after a certain concentration. This research provides insights into the intrinsic structure-activity relationship of individual nanocrystal superlattices with tunable structures through direct electrochemical analysis.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction

Yiyao Ge et al.

Summary: By engineering the crystal phase, researchers have successfully synthesized PdCu alloy nanomaterials with unconventional crystal phases and developed a method to prepare unconventional trimetallic nanomaterials. The newly synthesized nanomaterials exhibit excellent oxygen reduction reaction activity under alkaline conditions, highlighting the significant impact of crystal phase on catalytic performance.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

In Situ Reconstruction of V-Doped Ni2P Pre-Catalysts with Tunable Electronic Structures for Water Oxidation

Tingwen Zhao et al.

Summary: This study reports on the in-situ structural reconstruction of V-doped Ni2P pre-catalyst to form highly active NiV oxyhydroxides for oxygen evolution reaction (OER), showing enhanced kinetics for the adsorption of *OH and deprotonation of *OOH intermediates. Raman spectroscopy and X-ray absorption spectroscopy demonstrate that the increased content of the active beta-NiOOH phase contributes to OER activity enhancement. Density functional theory calculations verify that the V dopants facilitate the generation of *O intermediates during OER.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction

Leigang Li et al.

Summary: This Progress Report summarizes recent research progress in advanced electrocatalysts for improved acidic OER performance. It discusses fundamental understanding about acidic OER including reaction mechanisms and atomic understanding for rational design of efficient electrocatalysts. It also provides an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts in terms of catalyst category.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution

Bailin Tian et al.

Summary: The study demonstrates that doping metals such as Co, Rh, and Ir can alter the OER activity of γ-NiOOH, and the in situ electrical conductivity shows a good correlation with enhanced OER activity. Density functional theory calculations are used to explain the in situ conductivity of metal-doped γ-NiOOH during OER, and the simultaneous increase of OER activity with intermediate conductivity is rationalized by the intrinsic connections to the double exchange interaction between adjacent metal ions.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Discovery of Quantitative Electronic Structure-OER Activity Relationship in Metal-Organic Framework Electrocatalysts Using an Integrated Theoretical-Experimental Approach

Jian Zhou et al.

Summary: The research demonstrates a volcano-shaped relationship between electronic properties and OER activity, showing that NiFe-MOF with optimized energy level and electronic structure delivers ultra-low overpotentials. This electronic-structure/catalytic activity relationship is found to be universal for other Ni-based MOF catalysts, providing insights for designing highly efficient OER catalysts.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution

Zhi-Peng Wu et al.

Summary: A highly efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported in this study, with the structure-activity correlation of the active centers studied. It was found that the active center located on Ni sites showed moderate bindings with oxygenous intermediates, leading to enhanced OER performance.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Mo2N-W2N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Room-Temperature Na-S Batteries

Shipeng Zhang et al.

Summary: In this study, a Mo2N-W2N heterostructure embedded in a spherical carbon superstructure was designed to promote NaPS redox reactions and suppress the polysulfide shuttle effect, achieving high-performance Na-S batteries. The obtained battery showed high reversible capacity, superior long-term stability, and excellent rate capability.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li-S Battery

Wenting Li et al.

Summary: In this study, a series of Mn-based multimetallic MOF nano-octahedra were successfully prepared by a facile one-pot synthetic strategy. These nano-octahedra were used as sulfur hosts to prepare cathodes for Li-S batteries, with MnNi-MIL-100@S cathode exhibiting the best performance. The strategy described here allows for the incorporation of metal ions into MOF architecture, leading to the rational generation of novel multimetallic MOFs, and enables the general synthesis and study of various micro-/nanoscale MOFs in the field of energy storage.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Surface-Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual-Catalytic Center in Water Oxidation

Cejun Hu et al.

Summary: In this study, label-free surface-enhanced Raman spectroscopy was used to monitor the oxygen evolution reaction process on Ni3FeOx nanoparticles, revealing that Fe atoms are responsible for the initial OH- to O-O- oxidation, and the O-O- species undergo further oxidation between neighboring Fe and Ni sites.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Multidisciplinary

Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction

Hui Ding et al.

Summary: Electrochemical water splitting for hydrogen generation is a promising pathway for renewable energy conversion. Developing cost-effective and highly efficient electrocatalysts to drive sluggish oxygen-evolution reaction (OER) at the anode side is crucial. The investigation of structural transformation during OER contributes to understanding accurate catalytic mechanisms and benefiting the rational design of catalytic materials.

CHEMICAL REVIEWS (2021)

Article Chemistry, Physical

Ce-Modified Ni(OH)2 Nanoflowers Supported on NiSe2 Octahedra Nanoparticles as High-Efficient Oxygen Evolution Electrocatalyst

Shi Feng Zai et al.

Summary: A high-efficiency electrocatalyst for the oxygen evolution reaction (OER) has been designed and fabricated, showing remarkable activity with very low overpotential and Tafel slope, surpassing almost all OER electrocatalysts.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Multidisciplinary

Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte

Yingjie Li et al.

Summary: Electrochemical water splitting in alkaline media is a promising pathway for sustainable hydrogen production, but slow reaction rates and unfavorable kinetics have hindered technological progress. Development of non-noble metal catalysts is urgently needed to increase efficiency and reduce overpotential.

ENERGYCHEM (2021)

Review Chemistry, Multidisciplinary

Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis

Cheng Tang et al.

ACCOUNTS OF CHEMICAL RESEARCH (2018)