4.6 Article

On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 163, Issue -, Pages 103-109

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2016.06.029

Keywords

Acetate permeases; ActP1; ActP2; Escherichia coli; Rhodobacter capsulatus; Tellurite uptake

Funding

  1. University of Bologna (Bologna, Italy) [RFO-2012-2013]
  2. Fondazione Vasco e G.C. Rossi (Bologna, Italy) [A.10.N4.RICER.797]

Ask authors/readers for more resources

The oxyanion tellurite (TeO32-) is extremely toxic to bacterial cells. In Rhodobacter capsulatus, tellurite enters the cytosol by means of the high uptake-rate acetate permease RcActP2, encoded by one of the three actP genes present in this species (actP1, actP2 and actP3). Conversely, in Escherichia coli a low rate influx of the oxyanion is measured, which depends mainly on the phosphate transporter EcPitA, even though E. coli contains its own EcActP acetate permease. Here we report that when the actP2 gene from R. capsulatus is expressed in wild-type E. coli HB101 and in E. coli JW3460 Delta pitA mutant, the cellular intake of tellurite increases up to four times, suggesting intrinsic structural differences between EcActP and RcActP2. Indeed, a sequence analysis indicated the presence in RcActP2 of an insert of 15-16 residues, located between trans-membrane (TM) helices 6 and 7, which is absent in both EcActP and RcActPl. Based on this observation, the molecular models of homodimeric RcActP1 and RcActP2 were calculated and analyzed. In the RcActP2 model, the insert induces a perturbation in the conformation of the loop between TM helices 6 and 7, located at the RcActP2 dimerization interface. This perturbation opens a cavity on the periplasmic side that is closed, instead, in the RcActP1 model. This cavity also features an increase of the positive electric potential on the protein surface, an effect ascribed to specific residues Lys261, Lys281 and Arg560. We propose that this positively charged patch in RcActP2 is involved in recognition and translocation of the TeO32- anion, attributing to RcActP2 a greater ability as compared to RcActP1 to transport this inorganic poison inside the cells. (C) 2016 Elsevier Inc All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available