4.7 Article

Unification of Perdew-Zunger self-interaction correction, DFT plus U, and Rung 3.5 density functionals

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 157, Issue 15, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0109338

Keywords

-

Ask authors/readers for more resources

This study presents a unified derivation of three different approximations used in density functional theory (DFT): the Perdew-Zunger self-interaction correction (PZSIC), the Hubbard correction DFT+U, and the Rung 3.5 density functionals. The derivations show that these approximations can be obtained by introducing electron self-interaction into the Kohn-Sham reference system. New results include an atomic state PZSIC, a demonstration of how typical Hubbard U parameters can reproduce a scaled-down PZSIC, and a Rung 3.5 variant of DFT+U that doesn't require choosing atom-dependent states.
This Communication presents a unified derivation of three different approximations used in density functional theory (DFT): the Perdew-Zunger self-interaction correction (PZSIC), the Hubbard correction DFT+U, and the Rung 3.5 density functionals. All three approximations can be derived by introducing electron self-interaction into the Kohn-Sham (KS) reference system of noninteracting electrons. The derivation uses the Adiabatic Projection formalism: one projects the electron-electron interaction operator onto certain states, introduces the projected operator into the reference system, and defines a density functional for the remainder. Projecting onto individual localized KS orbitals recovers our previous derivation of the PZSIC [B. G. Janesko, J. Phys. Chem. Lett. 13, 5698-5702 (2022)]. Projecting onto localized atom-centered orbitals recovers a variant of DFT+U. Projecting onto localized states at each point in space recovers Rung 3.5 approaches. New results include an atomic state PZSIC that does not require localizing the KS orbitals, a demonstration that typical Hubbard U parameters reproduce a scaled-down PZSIC, and a Rung 3.5 variant of DFT+U that does not require choosing atom-dependent states. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available