4.6 Article

Elucidation of the interaction proteome of mitochondrial chaperone Hsp78 highlights its role in protein aggregation during heat stress

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 298, Issue 10, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jbc.2022.102494

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [VO 657/5-2, 174793735]

Ask authors/readers for more resources

Hsp78 is a mitochondrial chaperone that interacts with a wide variety of proteins related to metabolic functions and plays a role in stress-induced protein aggregation and disaggregation.
Chaperones of the Hsp100/Clp family represent major components of protein homeostasis, conferring maintenance of protein activity under stress. The ClpB-type members of the family, present in bacteria, fungi, and plants, are able to resolubilize aggregated proteins. The mitochondrial member of the ClpB family in Saccharomyces cerevisiae is Hsp78. Although Hsp78 has been shown to contribute to proteostasis in elevated temperatures, the biochemical mechanisms underlying this mitochondria-specific thermotolerance are still largely unclear. To identify endogenous chaperone substrate proteins, here, we generated an Hsp78-ATPase mutant with stabilized substrate-binding behavior. We used two stable isotope labeling-based quantitative mass spectrometry approaches to analyze the role of Hsp78 during heat stress- induced mitochondrial protein aggregation and disaggregation on a proteomic level. We first identified the endogenous substrate spectrum of the Hsp78 chaperone, comprising a wide variety of proteins related to metabolic functions including energy production and protein synthesis, as well as other chaperones, indicating its crucial functions in mitochondrial stress resistance. We then compared these interaction data with aggregation and disaggregation processes in mitochondria under heat stress, which revealed specific aggregation-prone protein populations and demonstrated the direct quantitative impact of Hsp78 on stress-dependent protein solubility under different conditions. We conclude that Hsp78, together with its cofactors, represents a recovery system that protects major mitochondrial metabolic functions during heat stress as well as conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available