4.6 Article

Lightning strike damage resistance of carbon-fiber composites with nanocarbon-modified epoxy matrices

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 139, Issue 46, Pages -

Publisher

WILEY
DOI: 10.1002/app.53157

Keywords

conducting polymers; graphene and fullerenes; nanotubes; thermosets

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/K016792/1]
  2. Department of Mechanical Engineering, Imperial College London, UK

Ask authors/readers for more resources

In this study, the electrical conductivity of carbon-fiber reinforced polymer (CFRP) composites was improved by adding graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs). The modified CFRP laminates demonstrated superior electrical performance and resistance against lightning strike damage, while reducing weight by 20%.
Carbon-fiber reinforced polymer (CFRP) composites are replacing metal alloys in aerospace structures, but they can be vulnerable to lightning strike damage if not adequately protected due to the poor electrical conductivity of the polymeric matrix. In the present work, to improve the conductivity of the CFRP, two electrically conductive epoxy formulations were developed via the addition of 0.5 wt% of graphene nanoplatelets (GNPs) and a hybrid of 0.5 wt% of GNPs/carbon nanotubes (CNTs) at an 8:2 mass ratio. Unidirectional CFRP laminates were manufactured using resin-infusion under flexible tooling (RIFT) and wet lay-up (WL) processes, and subjected to simulated lightning strike tests. The electrical performance of the RIFT plates was far superior to that of the WL plates, independent of matrix modification, due to their greater carbon-fiber volume fraction. The GNP-modified panel made using RIFT demonstrated an electrical conductivity value of 8 S/cm. After the lightning strike test, the CFRP panel remains largely unaffected as no perforation occurs. Damage is limited to matrix degradation within the top ply at the point of impact and localized charring of the surface. The GNP-modified panel showed a comparable level of resistance against lightning damage with the existing copper mesh technology, offering at the same time a 20% reduction in the structural weight. This indicates a feasible route to improve the lightning strike damage resistance of carbon-fiber composites without the addition of extra weight, hence reducing fuel consumption but not safety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available