4.7 Article

Effects of vanadium doping on the charge ordering and low-temperature spin-glass phase in Pr0.45Ca0.55MnO3

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 921, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.166048

Keywords

Vanadium doping; Perovskite structure; Charge ordering; Magnetization; Dielectric properties

Funding

  1. UGC, India

Ask authors/readers for more resources

This study reports on the structural, magnetic, and dielectric properties of Pr0.45Ca0.55Mn1-xVxO3 polycrystalline compounds. It is found that the charge ordering strength weakens and the ferromagnetic components develop in the antiferromagnetic background with a change in vanadium content. Additionally, colossal dielectric constant is observed in both samples.
We report structural, magnetic, and dielectric properties of the Pr0.45Ca0.55Mn1-xVxO3 (x = 0.05 and 0.1) polycrystalline compounds, prepared by solid state reaction method. Pnma space group and orthorhombic crystal structure of the compounds are confirmed by the Rietveld refinement of X-ray diffraction data. Magnetic study reveals a multiple-phase-separated metastable magnetic behavior with charge ordered phase followed by a spin-glass state at the low-temperature region. For a single change of vanadium content from x = 0.05-0.1, the charge ordering temperature decreases from 245 K to 239 K, the antiferromagnetic ordering temperature decreases from 131 K to 127 K, and the ferromagnetic cluster-glass ordering temperature increases from 41 K to 44 K. This indicates the weakening of charge ordering strength and development of ferromagnetic components in the antiferromagnetic background, which is also confirmed by isothermal hysteresis. Colossal dielectric constant is observed in both samples. In the measured temperature range, an implication of a ferroelectric phase transition around 253 K is observed in Pr0.45Ca0.55Mn0.90V0.10O3 compound. The calculated results indicate that the low-temperature relaxation follows variable range hopping behavior, whereas the high-temperature one takes place according to the Arrhenius model. The fitting parameters ascribe the low-temperature relaxation process to the hopping of polaron charge carriers at localized sites, whereas the high-temperature relaxation is related to MaxwellWagner relaxation, caused by blocking of charge carriers at grain boundaries. (c) 2022 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available