4.6 Article

A spatiotemporal decision support protocol based on thermal imagery for variable rate drip irrigation of a peach orchard

Journal

IRRIGATION SCIENCE
Volume 41, Issue 2, Pages 215-233

Publisher

SPRINGER
DOI: 10.1007/s00271-022-00830-x

Keywords

-

Ask authors/readers for more resources

This study developed a spatiotemporal decision support protocol for variable rate drip irrigation (SDSP-VRDI) in a peach orchard. The results showed that most management cells reached the target range under crop water status-based irrigation, but there were differences in the response to irrigation among different cells. Downscaling management from field to subfield scale is beneficial for precision irrigation management of orchard systems.
Precision irrigation can affect orchard water status and water productivity (WP). It is hypothesized that crop water status-based irrigation at the subfield scale can maintain tree water status according to targets, thereby increasing WP. Our objectives were to define a spatiotemporal decision support protocol for variable rate drip irrigation (SDSP-VRDI) in a well-watered peach orchard and to evaluate protocol efficiency on a subfield scale. Research was initiated during 2017 in a uniformly irrigated commercial peach orchard. In 2018, half the orchard was converted to SDSP-VRDI utilizing a model developed to study the relationship between stem water potential (SWP) and thermal image-based crop water stress index (CWSI). In 2019, the orchard's south subplot continued to be irrigated uniformly while its north subplot was managed according to SDSP-VRDI during the primary stage of fruit growth and the period of peak irrigation (stage III). The SDSP-VRDI included seven steps including calculation of the CWSI per management cell (MC) using thermal imagery. The CWSI was used to estimate SWP that was compared to a specified target range driving irrigation applied per MC based on FAO-56. The target range was reached in most MCs by applying MC-specific irrigation. Some specific MCs responded well to higher amounts of irrigation while others did not, as evident from relative yield, WP, and water cost efficiency data. Management downscaling from field to subfield scale appears to be beneficial and could advance precision irrigation management of complex orchard systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available