4.7 Article

MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 627, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2022.122214

Keywords

Colorectal cancer; Mesenchymal stem cells; Exosomes; microRNAs; mTOR; miR-100

Funding

  1. University of Tabriz

Ask authors/readers for more resources

This study found that exosomes derived from mesenchymal stem cells (MSC-Exos) can suppress proliferation, migration, invasion, and metastasis while inducing apoptosis of colorectal cancer (CRC) cells through the miR-100/mTOR/miR-143 axis. These findings suggest that MSC-Exo treatment and miR-100 restoration may be potential therapeutic strategies for CRC.
Exosomes derived from mesenchymal stem cells (MSCs) are mostly responsible for the therapeutic effects of MSCs. To show the therapeutic effects of the human bone marrow MSC-derived exosomes (MSC-Exos) on colorectal cancer (CRC) and explore the molecular cross-talks between them, CRC cells were treated with the MSC-Exos. We found that MSC-Exos were enriched with miR-100 and miR-143, which effectively downregulated mTOR, Cyclin D1, K-RAS, HK2 while upregulated p-27 expression. All these effects were reversed by concurrent treatment with MSC-Exos and antagomiR-100, confirming that they were caused by exosomal transfer of miR100 into recipient CRC cells. Moreover, exosomal miR-100 promoted endogenous miR-143 expression. The flow cytometry, MTT and trypan blue assays revealed that MSC-Exos could efficiently suppress proliferation and induce apoptosis of the CRC cells. Furthermore, wound healing, transwell migration and invasion assays confirmed their inhibitory effects on the migration and invasiveness of SW480 cells. We further confirmed these effects by analyzing the expression levels of epithelial to mesenchymal transition (EMT) factors and metastasisrelated genes. Results showed that MSC-Exos significantly suppressed the expression of MMP2 and MMP9 (metastasis-related genes), SNAIL and TWIST (EMT-inducing transcription factors), Vimentin and N-cadherin (mesenchymal cell markers), whereas E-cadherin (epithelial cell marker) was remarkably up-regulated. Collectively, our data indicated that MSC-Exos could suppress proliferation, migration, invasion and metastasis while inducing the apoptosis of the CRC cells via miR-100/mTOR/miR-143 axis. Our findings highlight that MSC-Exo treatment as well as miR-100 restoration might be considered as potential therapeutic strategies for CRC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available