4.7 Article

Development of a Method for Producing oxLDL: Characterization of Their Effects on HPV-Positive Head and Neck Cancer Cells

Journal

Publisher

MDPI
DOI: 10.3390/ijms232012552

Keywords

oxLDL; HNCC; HPV; LOX-1; CD36; cell migration

Ask authors/readers for more resources

This study successfully produced oxidized low-density lipoproteins (oxLDL) and found that exposure to oxLDL can decrease the migration of head and neck cancer cells, as well as increase the expression of CD36 and LOX-1 receptors associated with lipid uptake.
Cardiovascular diseases (CVD) and cancers are the two main causes of death worldwide. The initiation and progression of atherosclerosis is, in large part, caused by oxidized low-density lipoproteins (oxLDL); interestingly, oxLDL may also play a role in cancer cell metabolism and migration. As oxLDL are generally obtained by tedious ultracentrifugation procedures, home-made oxLDL were obtained by (i) applying a purification kit to isolate LDL and VLDL from human plasma; (ii) isolating LDL from VLDL by gel permeation chromatography (GPC); and (iii) oxidating LDL through CuSO4 incubation. On three HPV-positive head and neck cancer cells (HNCC) (93VU-147T, UM-SCC47, and UPCI-SCC154), cell migration was assessed using Boyden chambers, the Wnt/ss-catenin pathway was analyzed by Western Blotting, and the expression of two oxLDL receptors, LOX-1 and CD36, in response to oxLDL exposure, was analysed by immunofluorescence. Our data indicate: (a) a non-significant difference between reference and home-made oxLDL; (b) a decreased migration, parallel to an inhibition of the ss-catenin pathway; and (c) an increase of CD36 and LOX-1 expression in all HNCC. In conclusion, we successfully produced oxLDL. Our results demonstrate a decrease in HNCC migration after oxLDL exposure, and an increased expression of LOX-1 and CD36 associated with lipid uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available