4.7 Article

The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis

Journal

Publisher

MDPI
DOI: 10.3390/ijms232012670

Keywords

scaffold; coaxial electrospinning; osteogenesis; angiogenesis; bone defect repair

Funding

  1. National Natural Science Foundation of China [32000961]
  2. Natural Science Foundation of Hunan Province [2022JJ30659]

Ask authors/readers for more resources

Efficient biological scaffolds are needed to promote bone defect healing. This study reports on the preparation of a composite scaffold using coaxial electrospinning. The scaffold has a nano-scale morphology, high porosity, and sufficient mechanical strength to support tissue. Furthermore, the scaffold can sustain the release of nutrients, promoting bone and blood vessel growth, and accelerating bone defect repair.
There is still an urgent need for more efficient biological scaffolds to promote the healing of bone defects. Vessels can accelerate bone growth and regeneration by transporting nutrients, which is an excellent method to jointly increase osteogenesis and angiogenesis in bone regeneration. Therefore, we aimed to prepare a composite scaffold that could promote osteogenesis with angiogenesis to enhance bone defect repair. Here, we report that scaffolds were prepared by coaxial electrospinning with mesoporous bioactive glass modified with amino (MBG-NH2) adsorbing insulin-like growth factor-1 (IGF-1) as the core and silk fibroin (SF) adsorbing vascular endothelial growth factor (VEGF) as the shell. These scaffolds were named MBG-NH2/IGF@SF/VEGF and might be used as repair materials to promote bone defect repair. Interestingly, we found that the MBG-NH2/IGF@SF/VEGF scaffolds had nano-scale morphology and high porosity, as well as enough mechanical strength to support the tissue. Moreover, MBG-NH2 could sustain the release of IGF-1 to achieve long-term repair. Additionally, the MBG-NH2/IGF@SF/VEGF scaffolds could significantly promote the mRNA expression levels of osteogenic marker genes and the protein expression levels of Bmp2 and Runx2 in bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the MBG-NH2/IGF@SF/VEGF scaffolds promoted osteogenesis by simulating Runx2 transcription activity through the phosphorylated Erk1/2-activated pathway. Intriguingly, the MBG-NH2/IGF@SF/VEGF scaffolds could also significantly promote the mRNA expression level of angiogenesis marker genes and the protein expression level of CD31. Furthermore, RNA sequencing verified that the MBG-NH2/IGF@SF/VEGF scaffolds had excellent performance in promoting bone defect repair and angiogenesis. Consistent with these observations, we found that the MBG-NH2/IGF@SF/VEGF scaffolds demonstrated a good repair effect on a critical skull defect in mice in vivo, which not only promoted the formation of blood vessels in the haversian canal but also accelerated the bone repair process. We concluded that these MBG-NH2/IGF@SF/VEGF scaffolds could promote bone defect repair under accelerating angiogenesis. Our finding provides a new potential biomaterial for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available