4.7 Article

Special issue the advance of solid tumor research in China: Prediction of Sunitinib efficacy using computed tomography in patients with pancreatic neuroendocrine tumors

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 152, Issue 1, Pages 90-99

Publisher

WILEY
DOI: 10.1002/ijc.34294

Keywords

computed tomography; efficacy prediction; pancreatic neuroendocrine tumor; sunitinib

Categories

Ask authors/readers for more resources

This study developed and validated a CT-based method to predict the efficacy of sunitinib in patients with panNET. The proposed radiomics-based model accurately predicted tumor shrinkage and progression-free survival (PFS), and may help select patients suitable for sunitinib treatment.
Clinically effective methods to predict the efficacy of sunitinib, for patients with metastatic or locally advanced pancreatic neuroendocrine tumors (panNET) are scarce, making precision treatment difficult. This study aimed to develop and validate a computed tomography (CT)-based method to predict the efficacy of sunitinib in patients with panNET. Pretreatment CT images of 171 lesions from 38 patients with panNET were included. CT value ratio (CT value of tumor/CT value of abdominal aorta from the same patient) and radiomics features were extracted for model development. Receiver operating curve (ROC) with area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the proposed model. Tumor shrinkage of >10% at first follow-up after sunitinib treatment was significantly associated with longer progression-free survival (PFS; P < .001) and was used as the major treatment outcome. The CT value ratio could predict tumor shrinkage with AUC of 0.759 (95% confidence interval [CI], 0.685-0.833). We then developed a radiomics signature, which showed significantly higher AUC in training (0.915; 95% CI, 0.866-0.964) and validation (0.770; 95% CI, 0.584-0.956) sets than CT value ratio. DCA also confirmed the clinical utility of the model. Subgroup analysis showed that this radiomics signature had a high accuracy in predicting tumor shrinkage both for primary and metastatic tumors, and for treatment-naive and pretreated tumors. Survival analysis showed that radiomics signature correlated with PFS (P = .020). The proposed radiomics-based model accurately predicted tumor shrinkage and PFS in patients with panNET receiving sunitinib and may help select patients suitable for sunitinib treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available