4.6 Article

Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis

Journal

JOURNAL OF IMMUNOLOGY
Volume 197, Issue 2, Pages 504-516

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1600265

Keywords

-

Categories

Funding

  1. Jikei University
  2. Ministry of Education of Japan
  3. Satoshi Okamoto Memorial Foundation of Pulmonary Fibrosis
  4. Practical Research Project for Rare Intractable Diseases from the Japan Agency for Medical Research and Development
  5. Ministry of Health, Labor, and Welfare of Japan

Ask authors/readers for more resources

Fibroblastic foci, known to be the leading edge of fibrosis development in idiopathic pulmonary fibrosis (IPF), are composed of fibrogenic myofibroblasts. Autophagy has been implicated in the regulation of myofibroblast differentiation. Insufficient mitophagy, the mitochondria-selective autophagy, results in increased reactive oxygen species, which may modulate cell signaling pathways for myofibroblast differentiation. Therefore, we sought to investigate the regulatory role of mitophagy in myofibroblast differentiation as a part of IPF pathogenesis. Lung fibroblasts were used in in vitro experiments. Immunohistochemical evaluation in IPF lung tissues was performed. PARK2 was examined as a target molecule for mitophagy regulation, and a PARK2 knockout mouse was employed in a bleomycin-induced lung fibrosis model. We demonstrated that PARK2 knockdown-mediated mitophagy inhibition was involved in the mechanism for activation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT signaling pathway accompanied by enhanced myofibroblast differentiation and proliferation, which were clearly inhibited by treatment with both antioxidants and AG1296, a PDGFR inhibitor. Mitophagy inhibition-mediated activation of PDGFR signaling was responsible for further autophagy suppression, suggesting the existence of a self-amplifying loop of mitophagy inhibition and PDGFR activation. IPF lung demonstrated reduced PARK2 with concomitantly increased PDGFR phosphorylation. Furthermore, bleomycin-induced lung fibrosis was enhanced in PARK2 knockout mice and subsequently inhibited by AG1296. These findings suggest that insufficient mitophagy-mediated PDGFR/PI3K/AKT activation, which is mainly attributed to reduced PARK2 expression, is a potent underlying mechanism for myofibroblast differentiation and proliferation in fibroblastic foci formation during IPF pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available