4.7 Article

MnOx Film-Coated NiFe-LDH Nanosheets on Ni Foam as Selective Oxygen Evolution Electrocatalysts for Alkaline Seawater Oxidation

Related references

Note: Only part of the references are listed.
Article Engineering, Environmental

Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction

Ya-Nan Zhou et al.

Summary: In this study, a molten salt method was used to incorporate Nb into NiFe-layered double hydroxides, resulting in Nb-NiFe-LDH with enhanced OER activity. The material exhibited low overpotential, small Tafel slope, and long-term stability, attributed to the fine-tuned surface adsorption ability and optimized oxidation cycle of active metals by synergistic Nb and defects.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Multidisciplinary

MnOx-Decorated Nickel-Iron Phosphides Nanosheets: Interface Modifications for Robust Overall Water Splitting at Ultra-High Current Densities

Pan Wang et al.

Summary: This study improves the activities of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by growing 3D nickel-iron phosphides nanosheets modified by MnOx nanoparticles on nickel foam. This results in accelerated reaction kinetics and enhanced overall water splitting efficiency.

SMALL (2022)

Article Chemistry, Multidisciplinary

Partial Sulfidation Strategy to NiFe-LDH@FeNi2S4 Heterostructure Enable High-Performance Water/Seawater Oxidation

Lei Tan et al.

Summary: The construction of Ni2Fe-LDH/FeNi2S4 heterostructure through partial sulfidation is reported, which exhibits abundant active sites, rapid charge and mass transfer, and favorable adsorption energy, leading to improved alkaline water oxidation. In addition, the post-formed sulfate passivating layer on Ni2Fe-LDH/FeNi2S4/NF contributes to enhanced OER activity and durability in alkaline simulated seawater electrolyte.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Tailoring Oxygen Reduction Reaction Pathway on Spinel Oxides via Surficial Geometrical-Site Occupation Modification Driven by the Oxygen Evolution Reaction

Li An et al.

Summary: A surface evolution strategy was applied to change the surface structure of MnCo2O4 oxide, allowing for the switching of reaction pathways from 2e(-) ORR to 4e(-) ORR. Different surface configurations of MnCo2O4 were found to exhibit excellent performance in the oxygen reduction reaction.

ADVANCED MATERIALS (2022)

Article Chemistry, Physical

Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting

Haiyan Wang et al.

Summary: This study develops an efficient and abundant electrocatalyst for electrochemical seawater-splitting, which exhibits outstanding bifunctional catalytic activity in alkaline seawater and natural seawater electrolytes, making it a promising candidate for realistic seawater electrolysis.

JOURNAL OF COLLOID AND INTERFACE SCIENCE (2022)

Article Chemistry, Multidisciplinary

Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting

Libo Wu et al.

Summary: The study successfully synthesized a heterogeneous Ni2P-Fe2P microsheet electrocatalyst with superior catalytic activity and corrosion resistance, suitable for water and seawater electrolysis, demonstrating great potential. The catalyst has abundant active sites and a superior transfer coefficient, exhibiting performance even better than the currently reported best bifunctional catalysts.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Inorganic & Nuclear

NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting

Kun Jiang et al.

Summary: In this study, an advanced bifunctional electrocatalyst based on NiFe layered double hydroxide (LDH)/FeOOH heterostructure nanosheets was successfully synthesized via a simple electrodeposition method. The electrode demonstrated excellent electrocatalytic activity and stability, providing a valid strategy for designing a non-noble metal catalyst for seawater splitting. This work highlights the potential of the NiFe LDH/FeOOH heterostructure in facilitating active NiOOH species formation and enhancing overall alkaline simulated seawater splitting efficiency.

INORGANIC CHEMISTRY (2021)

Article Chemistry, Physical

Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process

Lorenzo Bigiani et al.

Summary: Through a specific material combination, selective triggering of oxygen generation and reduction of chlorine production in seawater has been achieved. The combination of MnO2 and Co3O4 performs the best in alkaline seawater splitting, showing significant results.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Physical

Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis

Huachuan Sun et al.

Summary: In this study, ultrathin rhodium-doped nickel-iron layered double hydroxide nanosheets were successfully synthesized, demonstrating excellent hydrogen evolution and oxygen evolution performance for advanced overall water splitting. The impressive mass activity in urea electro-oxidation reaction indicates great potential for overcoming the sluggish oxygen evolution reaction.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Physical

Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation

Libo Wu et al.

Summary: A novel hierarchical nanosheet-nanoflake-structured B-Co2Fe LDH catalyst has been developed with excellent OER catalytic activity, stability, and corrosion resistance in seawater electrolysis, showing promising potential for selective seawater oxidation.

NANO ENERGY (2021)

Review Energy & Fuels

Electrolysis of low-grade and saline surface water

Wenming Tong et al.

NATURE ENERGY (2020)

Article Multidisciplinary Sciences

In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

Fabio Dionigi et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds

Soeren Dresp et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Multidisciplinary Sciences

Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels

Yun Kuang et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2019)

Article Chemistry, Physical

Direct Electrolytic Splitting of Seawater: Opportunities and Challenges

Soeren Dresp et al.

ACS ENERGY LETTERS (2019)

Review Chemistry, Multidisciplinary

Robust noble metal-based electrocatalysts for oxygen evolution reaction

Qiurong Shi et al.

CHEMICAL SOCIETY REVIEWS (2019)

Article Chemistry, Inorganic & Nuclear

An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation

Zhaolong Wang et al.

INORGANIC CHEMISTRY FRONTIERS (2019)

Article Chemistry, Multidisciplinary

MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution

Johannes G. Vos et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Physical

Tunable nano-interfaces between MnOx and layered double hydroxides boost oxygen evolving electrocatalysis

Yudong Xue et al.

JOURNAL OF MATERIALS CHEMISTRY A (2018)

Article Chemistry, Inorganic & Nuclear

Fe-Doped Ni2P Nanosheet Array for High-Efficiency Electrochemical Water Oxidation

Jianmei Wang et al.

INORGANIC CHEMISTRY (2017)

Review Multidisciplinary Sciences

Perovskites in catalysis and electrocatalysis

Jonathan Hwang et al.

SCIENCE (2017)

Article Multidisciplinary Sciences

A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution

Bote Zhao et al.

NATURE COMMUNICATIONS (2017)

Article Chemistry, Analytical

New binary Mn and Cr mixed oxide electrocatalysts for the oxygen evolution reaction

Xiuli Song et al.

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2016)

Article Electrochemistry

Modified electrolytic manganese dioxide (MEMD) for oxygen generation in alkaline medium

Dario Delgado et al.

JOURNAL OF SOLID STATE ELECTROCHEMISTRY (2015)

Article Multidisciplinary Sciences

Global threats to human water security and river biodiversity

C. J. Voeroesmarty et al.

NATURE (2010)

Article Nanoscience & Nanotechnology

Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in seawater electrolysis

H Habazaki et al.

SCRIPTA MATERIALIA (2001)