4.6 Article

The Regulation of Inherently Autoreactive VH4-34-Expressing B Cells in Individuals Living in a Malaria-Endemic Area of West Africa

Journal

JOURNAL OF IMMUNOLOGY
Volume 197, Issue 10, Pages 3841-3849

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1600491

Keywords

-

Categories

Funding

  1. Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health
  2. Autoimmunity Center of Excellence - National Institutes of Health [5R37AI049660, U19 AI110483]

Ask authors/readers for more resources

Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4(+) plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4(+) peripheral blood CD19(+) B cells was similar in United States adults and African adults and children; however, more 9G4(+) B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4(+) IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4(+) B cells acquired phenotypes of atypical and classical memory B cells and 9G4(+) IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4(+) B cells and 9G4(+) IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available