4.6 Article

Elevated Response to Type I IFN Enhances RANKL-Mediated Osteoclastogenesis in Usp18-Knockout Mice

Journal

JOURNAL OF IMMUNOLOGY
Volume 196, Issue 9, Pages 3887-3895

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1501496

Keywords

-

Categories

Funding

  1. National Research Foundation of Korea - Korean government [NRF-2013R1A2A2A01067617, 2011-0030074, NRF-2014R1A2A1A10050406]

Ask authors/readers for more resources

A balance between bone formation and bone resorption is critical for the maintenance of bone mass. In many pathological conditions, including chronic inflammation, uncontrolled activation of osteoclast differentiation often causes excessive bone resorption that results in osteoporosis. In this study, we identified the osteopenia phenotype of mice lacking Usp18 (also called Ubp43), which is a deISGylating enzyme and is known as a negative regulator of type I IFN signaling. The expression of Usp18 was induced in preosteoclasts upon receptor activator of NF-kappa B ligand (RANKL) treatment. In an in vitro osteoclast-differentiation assay, bone marrow macrophages from Usp18-deficient mice exhibited an enhanced differentiation to multinucleated cells, elevated activation of NFATc1, and an increased expression of osteoclast marker genes upon RANKL treatment. Furthermore, in vitro quantification of bone resorption revealed a great increase in osteoclastic activities in Usp18-deficient cells. Interestingly, proinflammatory cytokine genes, such as IP-10 (CXCL10), were highly expressed in Usp18-deficient bone marrow macrophages upon RANKL treatment compared with wild-type cells. In addition, serum cytokine levels, especially IP-10, were significantly high in Usp18-knockout mice. In sum, we suggest that, although type I IFN is known to restrict osteoclast differentiation, the exaggerated activation of the type I IFN response in Usp18-knockout mice causes an osteopenia phenotype in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available