4.7 Article

Adaptive Pilot Allocation for Estimating Sparse Uplink MU-MIMO-OFDM Channels

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 21, Issue 10, Pages 8230-8244

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2022.3164970

Keywords

Antennas; Resource management; OFDM; Antenna measurements; Channel estimation; Wireless communication; Symbols; OFDM; MIMO; sparse channel estimation; compressive sensing; pilot allocation

Funding

  1. Belgian Excellence of Science (EOS) [EOS30452698]
  2. Flemish Fund for Scientific Research (FWO)
  3. National Natural Science Foundation of China [61801516, 61701530, 61701531, 61971273]
  4. Flemish Government (AI Research Program)

Ask authors/readers for more resources

This paper investigates the design of efficient algorithms for adaptive orthogonal pilot allocation in uplink MIMO-OFDM communication systems. By optimizing the number and positions of pilot subcarriers, unnecessary overhead is reduced, and system performance is improved.
We consider uplink multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication. The transmit (Tx) side of the envisaged system consists of several single-antenna users or/and several multiple-antenna users. At the receive side, a multiple-antenna access point employs compressive sensing techniques to estimate the channel impulse response from the preamble portion of the observed packets. The traditional approach is that of orthogonal pilot allocation: during a short training period, each OFDM subcarrier is assigned exclusively to a single Tx antenna. In this case, the channel state information can conveniently be acquired on a per Tx antenna basis. To the best of our knowledge, all related research imposes that all Tx antennas are allocated the same amount of pilots (which must then be tailored for the most extreme channel conditions). However, in the considered system, Tx antennas may experience totally different channel conditions. Under these circumstances, the use of a fixed number of pilots per Tx antenna results in a lot of unnecessary overhead. To tackle this problem, our work addresses the design of efficient algorithms for adaptive orthogonal pilot allocation. The following design principles are applied: orthogonal pilot allocation, constant-modulus modulation, minimum measurement matrix mutual coherence optimization, and the condition that the number of pilot subcarriers allocated to each Tx antenna is adjusted to the channel conditions experienced by that Tx antenna. The paper tackles the problem of determining the optimal number of pilot subcarriers as well as the optimal positions of the pilots. To facilitate adaptive operation, we propose a reduced-complexity method to determine the optimal pilot positions. The performance of our algorithms is demonstrated by means of computer simulations, using both theoretical channel models and results from our own channel measurement campaign.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available