4.6 Article

Modeling and Characterization of the Narrow-Width Effect of 4H-SiC MOSFETs With Local Oxidation of SiC Isolation

Journal

IEEE TRANSACTIONS ON ELECTRON DEVICES
Volume 69, Issue 10, Pages 5742-5748

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TED.2022.3200936

Keywords

Bird's beak; H2O diffusion; local oxidation of silicon carbide (LOCOSiC); narrow-width effect (NWE); silicon carbide

Funding

  1. Ministry of Science and Technology, Taiwan [MOST-110-2218-E-A49-008]

Ask authors/readers for more resources

This article reports the narrow-width effect (NWE) of 4H-SiC MOSFETs with LOCOSiC isolation and proposes a H2O diffusion and oxidation model to explain the growth of a long bird's beak. The problems caused by the long bird's beak and unusual NWE can be overcome by adjusting the overetching time and the thickness of the FOX layer.
In this article, the narrow-width effect (NWE) of 4H-SiC MOSFETs with local oxidation of SiC (LOCOSiC) isolation is reported. A channel width-dependent current hump was observed in the subthreshold region for n-type 4H-SiC MOSFETs with LOCOSiC, and a channel width-dependent threshold voltage (V-th) shift was observed for p-type 4H-SiC MOSFETs with LOCOSiC. This unusual NWE arises from the increase in the gate oxide thickness from the channel center toward the isolation edge and is different from the conventional NWE found in local oxidation of silicon (LOCOS) technology, which arises from the charge stored in the parasitic field oxide (FOX) capacitor and lateral dopant encroachment. A H2O diffusion and oxidation model is proposed in this article to explain the growth of a long bird's beak in 4H-SiC MOSFETs with LOCOSiC. Technology computer-aided design (TCAD) simulations were executed to explore the H2O diffusion behavior of these MOSFETs, and an analytical formula was derived to predict the oxide layer thickness and length of bird's beak along the diffusion path in the H2O diffusion and oxidation model. The problems caused by the long bird's beak and unusual NWE can be overcome by increasing the overetching time of the pad oxide removal and marginally decreasing the thickness of the FOX layer. Therefore, the NWE of the LOCOSiC isolation is expected to be weaker than that of the LOCOS isolation because field implantation is unnecessary, and thus, dopant encroachment does not occur in the LOCOSiC technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available