4.7 Article

Semisupervised white matter hyperintensities segmentation on MRI

Journal

HUMAN BRAIN MAPPING
Volume 44, Issue 4, Pages 1344-1358

Publisher

WILEY
DOI: 10.1002/hbm.26109

Keywords

brain MRI; convolutional neural networks; deep learning; segmentation; semisupervised learning; small vessel diseases; white matter hyperintensities

Ask authors/readers for more resources

This study proposed a new loss function called level-set loss (LSLoss) for cerebral white matter hyperintensities segmentation. By training a V-Net using MRI images, the method achieved high dice similarity coefficients on various testing sets.
This study proposed a semisupervised loss function named level-set loss (LSLoss) for cerebral white matter hyperintensities (WMHs) segmentation on fluid-attenuated inversion recovery images. The training procedure did not require manually labeled WMH masks. Our image preprocessing steps included biased field correction, skull stripping, and white matter segmentation. With the proposed LSLoss, we trained a V-Net using the MRI images from both local and public databases. Local databases were the small vessel disease cohort (HKU-SVD, n = 360) and the multiple sclerosis cohort (HKU-MS, n = 20) from our institutional imaging center. Public databases were the Medical Image Computing Computer-assisted Intervention (MICCAI) WMH challenge database (MICCAI-WMH, n = 60) and the normal control cohort of the Alzheimer's Disease Neuroimaging Initiative database (ADNI-CN, n = 15). We achieved an overall dice similarity coefficient (DSC) of 0.81 on the HKU-SVD testing set (n = 20), DSC = 0.77 on the HKU-MS testing set (n = 5), and DSC = 0.78 on MICCAI-WMH testing set (n = 30). The segmentation results obtained by our semisupervised V-Net were comparable with the supervised methods and outperformed the unsupervised methods in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available