4.7 Article

Study on using graphene and graphite nanoparticles as fuel additives in waste cooking oil biodiesel

Journal

FUEL
Volume 328, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2022.125270

Keywords

Biodiesel; Combustion; Emissions; Graphene; Graphite; Nanoparticle

Funding

  1. UKIERI project [DST-UKIERI 18-19-04]

Ask authors/readers for more resources

Using waste cooking oil to produce biodiesel and adding graphene and graphite nanoparticle additives can improve combustion characteristics, reduce exhaust emissions, and improve engine efficiency.
Utilising waste cooking oil biodiesel in internal combustion engines for power generation and transport is of increasing importance, as it is the least pollutant disposal method for waste cooking oil. Besides, researchers have recently shown an increasing interest in utilising graphene and its derivatives in different applications due to its unique thermal and physical characteristics, including enhancing the combustion characteristics of biofuels. Therefore, this article studies the characteristics of waste cooking oil biodiesel blended with few-layered graphene and graphite nanoparticles additives and their influence on combustion and engine emissions and benchmark them against neat biodiesel and diesel fuels. The biodiesel was synthesised through a transesterification method from waste cooking oil and blended with diesel or butanol after adding few-layered graphene and graphite nanoparticles. Few-layered graphene and graphite nanoparticle additives led to greater peak in-cylinder pressure by 0.5-2.5% increment and 1-4% lower heat released rate at full load. As such, employing few-layered graphene and graphite in a fuel mix reduced NOx emission by 0.7-5 % compared to 100% diesel counterpart. Besides, at full engine load, waste cooking biodiesel blended with 100 ppm few-layered graphene and graphite nanoparticles showed an increment in brake thermal efficiency by 8-10% compared to pure fossil diesel and waste cooking biodiesel. The results show the feasibility of using graphene-based nanoparticle additives in biodiesel to enhance biodiesel fuel combustion characteristics, hence lowering NOx emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available