4.7 Article

Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed high-dose glycinin

Journal

FISH & SHELLFISH IMMUNOLOGY
Volume 129, Issue -, Pages 127-136

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2022.08.063

Keywords

Taurine; Glycinin; Inflammation; Intestinal health; Rhynchocypris lagowskii Dybowski

Funding

  1. 13th Five-Year Science and Technology Project of Jilin Provincial Education Department, China [JJKH20200361KJ]

Ask authors/readers for more resources

This study evaluated the protective effect of taurine on intestinal damage and growth inhibition induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The results showed that taurine can partially alleviate the negative effects of glycinin on fish, improving growth performance and feed efficiency.
The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 +/- 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-alpha and IL-1 beta mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-beta mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2?HO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available