4.7 Article

S-limonene protects the heart in an experimental model of myocardial infarction induced by isoproterenol: Possible involvement of mitochondrial reactive oxygen species

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 930, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ejphar.2022.175134

Keywords

s-Limonene; Myocardial infarction; Natural products; Reactive oxygen species

Funding

  1. Sao Paulo Research Foundation (FAPESP) [2019/21304-4, 2019/18918-0]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [437969/2018-5, 305345/2019-2]
  4. CNPq
  5. CAPES

Ask authors/readers for more resources

This study aimed to investigate the cardioprotective effects of s-limonene in an isoproterenol-induced myocardial infarction (MI) animal model and the underlying mechanisms. The results showed that s-limonene attenuated isoproterenol-induced MI injury by inhibiting increased Ca2+ and attenuating oxidative stress through the CaMKII pathway.
Background: Myocardial infarction (MI) is associated with high mortality rates, despite the fact that there are therapies available. Importantly, excessive oxidative stress may contribute to ischemia/reperfusion injury leading to death related to MI. In this scenario, naturally occurring antioxidant compounds are an important source of possible therapeutic intervention. Thus, this study sought to elucidate the mechanisms of cardioprotection of s-limonene in an isoproterenol-induced MI animal model.Methods: Wistar rats were treated with 1 mg/kg s-limonene (SL) or 100 mg/kg N-acetylcysteine (NAC, positive control) once, 30 min after isoproterenol-induced MI (applied in two doses with a 24 h interval). The protective effects of SL in the heart were examined via the serum level of creatine kinase myocardial band (CK-MB), electrocardiographic profile, infarct size and histological parameters. Using isolated cardiomyocytes, we also assessed calcium transient amplitude, cytosolic and mitochondrial oxidative stress and the expression of proteins related to oxidative stress. Results: SL at a concentration of 1 mg/kg attenuated isoproterenol-induced MI injury, by preventing ST-segment elevation and QTc prolongation in the ECG. SL reduced the infarct size and collagen content in cardiac tissue. At the cellular level, SL prevented increased Ca2+, associated with attenuation of cytosolic and mitochondrial oxidative stress. These changes resulted in a reduction of the oxidized form of Ca2+ Calmodulin-Dependent Kinase II (CaMKII) and restored superoxide dismutase and glutathione peroxidase activity.Conclusion: Our data show that s-limonene promotes cardioprotection against MI injury, probably through inhibition of increased Ca2+ and attenuation of oxidative stress via CaMKII.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available