4.8 Article

Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 25, Issue 41, Pages 6527-6537

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201503015

Keywords

-

Funding

  1. Ministry of Science and Technology [MOST 103-2113-M-006-008-MY2]
  2. Headquarters of University Advancement at the National Cheng Kung University
  3. Ministry of Education, Taiwan, ROC

Ask authors/readers for more resources

A therapeutic carrier in the second near-infrared (NIR) window is created that features magnetic target, magnetic resonance imaging (MRI) diagnosis, and photothermal therapy functions through the manipulation of a magnet and NIR laser. A covellite-based CuS in the form of rattle-type Fe3O4@CuS nanoparticles is developed to conduct photoinduced hyperthermia at 808 and 1064 nm of the first and second NIR windows, respectively. The Fe3O4@CuS nanoparticles exhibit broad NIR absorption from 700 to 1300 nm. The in vitro photothermal results show that the laser intensity obtained using 808 nm irradiation required a twofold increase in its magnitude to achieve the same damage in cells as that obtained using 1064 nm irradiation. Because of the favorable magnetic property of Fe3O4, magnetically guided photothermal tumor ablation is performed for assessing both laser exposures. According to the results under the fixed laser intensity and irradiation spot, exposure to 1064 nm completely removed tumors showing no signs of relapse. On the other hand, 808 nm irradiation leads to effective inhibition of growth that remained nearly unchanged for up to 30 d, but the tumors are not completely eliminated. In addition, MRI is performed to monitor rattle-type Fe3O4@CuS localization in the tumor following magnetic attraction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available