4.7 Article

A nonlinear spatio-temporal lumping of radar rainfall for modeling multi-step-ahead inflow forecasts by data-driven techniques

Journal

JOURNAL OF HYDROLOGY
Volume 535, Issue -, Pages 256-269

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2016.01.056

Keywords

Data-driven models; Adaptive Neuro-Fuzzy Inference System (ANFIS); Rainfall-runoff processes; Gamma test; Probability information of forecasts

Funding

  1. Ministry of Science and Technology, Taiwan, ROC [103-2313-B-002-016-MY3]

Ask authors/readers for more resources

Accurate multi-step-ahead inflow forecasting during typhoon periods is extremely crucial for real-time reservoir flood control. We propose a spatio-temporal lumping of radar rainfall for modeling inflow forecasts to mitigate time-lag problems and improve forecasting accuracy. Spatial aggregation of radar cells is made based on the sub-catchment partitioning obtained from the Self-Organizing Map (SOM), and then flood forecasting is made by the Adaptive Neuro Fuzzy Inference System (ANFIS) models coupled with a 2-staged Gamma Test (2-GT) procedure that identifies the optimal non-trivial rainfall inputs. The Shihmen Reservoir in northern Taiwan is used as a case study. The results show that the proposed methods can, in general, precisely make 1- to 4-hour-ahead forecasts and the lag time between predicted and observed flood peaks could be mitigated. The constructed ANFIS models with only two fuzzy if-then rules can effectively categorize inputs into two levels (i.e. high and low) and provide an insightful view (perspective) of the rainfall-runoff process, which demonstrate their capability in modeling the complex rainfall-runoff process. In addition, the confidence level of forecasts with acceptable error can reach as high as 97% at horizon t+1 and 77% at horizon t+4, respectively, which evidently promotes model reliability and leads to better decisions on real-time reservoir operation during typhoon events. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available