4.7 Review

Enhanced remediation of lead (II) and cadmium (II) ions from aqueous media using porous magnetic nanocomposites- A comprehensive review on applications and mechanism

Journal

ENVIRONMENTAL RESEARCH
Volume 213, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.113720

Keywords

Magnetic; Nanocomposite; Metal; Efficiency; Uptake

Ask authors/readers for more resources

Lead and cadmium, identified as toxic heavy metals, cause significant ecological imbalance due to their tendency to bioaccumulate. Magnetic nanocomposites have gained considerable attention in water treatment technology for their ability to reduce contamination and high adsorption capacity for lead and cadmium.
Lead and Cadmium, identified as toxic heavy metals, cause significant imbalance in the eco-system due to their tendency to bioaccumulate. Remediation of heavy metals by conventional adsorptive materials suffer demerits related to low efficiency or removal. Among the variety of adsorbent materials used in the adsorption process, metal oxides-and graphene oxide magnetic nanocomposites have gained a considerable attention. The use of nanomaterials may help to reduce this contamination, but after use, they are difficult to remove from water. An added magnetic property to nanomaterials facilitates their retrieval after use. The magnetic properties of these hybrid magnetic nanocomposites, coupled with unique characteristics of organic and inorganic elements, have found extensive application in water treatment technology. Detailed discussion on functionalisation of magnetic nanocomposites and the enhanced performance are presented. Magnetic graphene oxide-covalently functional-ized-tryptophan was reported to have the highest adsorption capacity of 766.1 mg/g for remediation of lead (II) ions and graphene oxide exhibited the highest adsorption capacity of 530 mg/g for Cd (II) ions. The adsorption mechanisms for heavy metal ions on the surface of novel adsorbents, particularly lead and cadmium, using magnetic nanocomposites have been explained with reference to the isotherm models studied. The future scope of research in this area of research is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available