4.7 Article

A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops

Journal

ENVIRONMENTAL POLLUTION
Volume 311, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120058

Keywords

Rice; HIPP16; Cadmium; Detoxification; Accumulation; Phytoremediation

Funding

  1. National Natural Science Foundation of China [21777072]

Ask authors/readers for more resources

The study identified a novel rice gene OsHIPP16 that plays a crucial role in limiting Cd accumulation in rice crops and improving environmental quality.
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76-34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36-35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available