4.5 Article

Partially hydrolyzed polyacrylamide: enhanced oil recovery applications, oil-field produced water pollution, and possible solutions

Journal

ENVIRONMENTAL MONITORING AND ASSESSMENT
Volume 194, Issue 12, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10661-022-10569-9

Keywords

Partially hydrolyzed polyacrylamide; Enhanced oil recovery; Produced water; Acrylamide; Toxicity; Bioremediation

Funding

  1. The Research Council (TRC) Oman
  2. Sultan Qaboos University [RC/RG-DVC/OGRC/18/01]

Ask authors/readers for more resources

Polyacrylamide is widely used in oil fields to enhance oil recovery, but it also produces a large quantity of toxic wastewater. The challenge is to remove or degrade polyacrylamide in an environmentally safe manner. Biodegradation with the aid of microbes is considered an efficient and environmentally friendly solution.
Polymers, such as partially hydrolyzed polyacrylamide (HPAM), are widely used in oil fields to enhance or improve the recovery of crude oil from the reservoirs. It works by increasing the viscosity of the injected water, thus improving its mobility and oil recovery. However, during such enhanced oil recovery (EOR) operations, it also produces a huge quantity of water alongside oil. Depending on the age and the stage of the oil reserve, the oil field produces similar to 7-10 times more water than oil. Such water contains various types of toxic components, such as traces of crude oil, heavy metals, and different types of chemicals (used during EOR operations such as HPAM). Thus, a huge quantity of HPAM containing produced water generated worldwide requires proper treatment and usage. The possible toxicity of HPAM is still ambiguous, but its natural decomposition product, acrylamide, threatens humans' health and ecological environments. Therefore, the main challenge is the removal or degradation of HPAM in an environmentally safe manner from the produced water before proper disposal. Several chemical and thermal techniques are employed for the removal of HPAM, but they are not so environmentally friendly and somewhat expensive. Among different types of treatments, biodegradation with the aid of individual or mixed microbes (as biofilms) is touted to be an efficient and environmentally friendly way to solve the problem without harmful side effects. Many researchers have explored and reported the potential of such bioremediation technology with a variable removal efficiency of HPAM from the oil field produced water, both in lab scale and field scale studies. The current review is in line with United Nations Sustainability Goals, related to water security-UNSDG 6. It highlights the scale of such HPAM-based EOR applications, the challenge of produced water treatment, current possible solutions, and future possibilities to reuse such treated water sources for other applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available