4.5 Article

Desertification prediction with an integrated 3D convolutional neural network and cellular automata in Al-Muthanna, Iraq

Journal

ENVIRONMENTAL MONITORING AND ASSESSMENT
Volume 194, Issue 10, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10661-022-10379-z

Keywords

Desertification prediction; Convolutional neural networks; Cellular automata; Al-Muthanna

Funding

  1. Engineering Faculty at Universiti Putra Malaysia (UPM)

Ask authors/readers for more resources

This study employs remote sensing and geospatial solutions to investigate desertification in Al-Khidhir district. By constructing prediction models and analyzing historical land cover maps and desertification indicators, the study predicts the future trend of desertification in Al-Khidhir district. The results indicate that without control strategies, the extent of bare land will expand.
Desertification is a major environmental issue all over the world, and Al-Khidhir district, Al-Muthanna, in the south of Iraq is no exception. In mapping, assessing, and predicting desertification, remote sensing and geospatial solutions (spatial analysis, machine learning) are crucial. During 1998-2018, this study employed satellite images from Landsat TM, ETM +, and OLI to map and predict desertification in the Al-Khidhir district. The year 2028 was chosen as the target date. Prediction models were constructed using a 3D convolutional neural network (3D CNN) and cellular automata (CA) techniques. In addition to the historical land cover maps, the model incorporated desertification indicators identified as important in the study, including geology, soil type, distance from waterways, elevation, population density, and Normalized Difference Vegetation Index (NDVI). Several accuracy metrics were used to evaluate the models, including overall accuracy (OA), average accuracy (AA), and the Kappa index (K). The simulated and actual land cover maps from 1998 and 2008 were used to evaluate the desertification prediction models. The 3D CNN model outperforms the typical 2D CNN for both the 2008 and 2018 images, according to the results. For the 2008 image, the 3D CNN model achieved 89.675 OA, 69.946 AA, and 0.781 K, while the 2018 image achieved 91.494 OA, 75.138 AA, and 0.770 K. The 2D CNN model performed a little worse than the 3D CNN model. The results of the change assessment showed that between 1998 and 2008, agricultural land was the dominant class (39%, 47.4%, respectively). The bare land, however, was the most dominant class in 2018, accounting for 46.6% of the total, compared to 26.2% for agricultural land. The spatial distribution characteristics of desertification in the Al-Khidhir, in the year 1998, were prevalent in the area's south (25.9%). In the following 10 years, desertification has spread to the surrounding territories. In the year 2008, desertification increased in the north of the study area (50.8%). Unless the local administration of Al-Khidhir district establishes desertification control strategies, this study suggests that the extent of bare land could expand in 2028 (54.1%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available