4.7 Article

Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

Journal

JOURNAL OF HYDROLOGY
Volume 535, Issue -, Pages 301-317

Publisher

ELSEVIER
DOI: 10.1016/j.jhydrol.2016.01.069

Keywords

Climate change impact; Hydrological model structure; Uncertainties; Land use changes

Funding

  1. Danish Strategic Research Council for the Centre for Regional Change in the Earth System (CRES) [DSF-EnMi 09-066868]

Ask authors/readers for more resources

Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km(2) catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available