4.6 Article

Coupled Electromagnetic-Dynamic Modeling and Bearing Fault Characteristics of Induction Motors considering Unbalanced Magnetic Pull

Journal

ENTROPY
Volume 24, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/e24101386

Keywords

induction motor; bearing faults; coupled model; unbalanced magnetic pull; multiple coupled circuit

Funding

  1. National Natural Science Foundation of China [51975576]
  2. Defense Industrial Technology Development Program [WDZC*******0305]

Ask authors/readers for more resources

This paper proposes a coupled electromagnetic-dynamic modeling method for induction motors, introducing unbalanced magnetic pull. Simulation results verify the effectiveness of the model and reveal the modulation in the vibration spectrum caused by the unbalanced magnetic pull. The proposed model can help obtain difficult-to-measure information and serve as a technical basis for further research on the nonlinear characteristics and chaos in induction motors.
Induction motors are complex energy conversion systems across the domains of dynamics, electricity, and magnetism. Most existing models mainly consider unidirectional coupling, such as the effect of dynamics on electromagnetic properties, or the effect of unbalanced magnetic pull on dynamics, while in practice it should be a bidirectional coupling effect. The bidirectionally coupled electromagnetic-dynamics model is beneficial to the analysis of induction motor fault mechanisms and characteristics. This paper proposes a coupled electromagnetic-dynamic modeling method that introduces unbalanced magnetic pull. By using the rotor velocity, air gap length, and unbalanced magnetic pull as the coupling parameters, the coupled simulation of the dynamic and electromagnetic models can be effectively realized. Simulation results for bearing faults show that the introduction of magnetic pull induces a more complex dynamic behavior of the rotor, which in turn leads to modulation in the vibration spectrum. The fault characteristics can be found in the frequency domain of the vibration and current signals. Through the comparison between simulation and experimental results, the effectiveness of the coupled modeling approach and the frequency domain characteristics caused by the unbalanced magnetic pull are verified. The proposed model can help to obtain a variety of information that is difficult to measure in reality and can also serve as a technical basis for further research on nonlinear characteristics and chaos in induction motors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available