4.7 Article

Sharp phase-field modeling of isotropic solidification with a super efficient spatial resolution

Journal

ENGINEERING WITH COMPUTERS
Volume 39, Issue 3, Pages 1699-1709

Publisher

SPRINGER
DOI: 10.1007/s00366-022-01729-z

Keywords

Phase-field modeling; Solidification; Nonlinear preconditioning; Finite differences

Ask authors/readers for more resources

The phase-field method is a powerful framework for microstructure evolution modeling, but grid friction, pinning, and anisotropy limit its resolution efficiency and accuracy. The sharp phase-field method and local restoration of translational invariance can eliminate these limitations.
The phase-field method provides a powerful framework for microstructure evolution modeling in complex systems, as often required within the framework of integrated computational materials engineering. However, spurious grid friction, pinning and grid anisotropy seriously limit the resolution efficiency and accuracy of these models. The energetic resolution limit is determined by the maximum dimensionless driving force at which reasonable model operation is still ensured. This limit turns out to be on the order of 1 for conventional phase-field models. In 1D, grid friction and pinning can be eliminated by a global restoration of Translational Invariance (TI) in the discretized phase-field equation. This is called the sharp phase-field method, which allows to choose substantially coarser numerical resolutions of the diffuse interface without the appearance of pinning. In 3D, global TI restricts the beneficial properties to a few specific interface orientations. We propose an accurate scheme to restore TI locally in the local interface normal direction. The new sharp phase-field model overcomes grid friction and pinning in three-dimensional simulations, and can accurately operate at dimensionless driving forces up to the order of 10 4 . At one-grid-point interface resolutions, exceptional degrees of isotropy can be achieved, if further the largely inhomogeneous latent heat release at the advancing solid-liquid interface is mitigated. Imposing a newly proposed source term regularization, the new model captures the formation of isotropic seaweed structures without spurious dendritic selection by grid anisotropy, even at one-grid-point interface resolutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available