4.7 Article

Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System

Journal

JOURNAL OF HYDROLOGY
Volume 541, Issue -, Pages 862-872

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2016.07.047

Keywords

CloudSat; NEXRAD; Radar; Snowfall

Funding

  1. Hydrometeorology and Remote Sensing (HyDROS) Laboratory at The University of Oklahoma
  2. National Natural Science Foundation of China [41361022, 41171020]
  3. Open Fund from State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University [SKHL1310, SKHL1501]
  4. NASA New Investigator Program (NIP) award
  5. NASA Energy and Water Cycle Study (NEWS) award

Ask authors/readers for more resources

The latest global snowfall product derived from the CloudSat Cloud Profiling Radar (2C-SNOW-PROFILE) is compared with NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS/Q3) system precipitation products from 2009 through 2010. The results show that: (1) Compared to Q3, CloudSat tends to observe more extremely light snowfall events (<0.2 mm/h) and snowfall rate (SR) between 0.6 to 1 mm/h, and detects less snowfall events with SR between 0.2-0.5 mm/h. (2) CloudSat identifies 69.40% of snowfall events detected by Q3 as certain snow and 10% as certain mixed. When possible snow, possible mixed, and certain mixed precipitation categories are assumed to be snowfall events, CloudSat has a high snowfall POD (86.10%). (3) CloudSat shows less certain snow precipitation than Q3 by 26.13% with a low correlation coefficient (0.41) with Q3 and a high RMSE (0.6 mm/h). (4) With Q3 as reference, CloudSat underestimates (overestimates) certain snowfall when the bin height of detected snowfall events are below (above) 3 km, and generally overestimates light snowfall (<1 mm/h) by 7.53%, and underestimates moderate snowfall (1-2.5 mm/h) by 42.33% and heavy snowfall (>= 2.5 mm/h) by 68.73%. (5) The bin heights of most (99.41%) CloudSat surface snowfall events are >1 km high above the surface, whereas 76.41% of corresponding Q3 observations are low below 1 km to the near ground surface. This analysis will provide helpful reference for CloudSat snowfall estimation algorithm developers and the Global Precipitation Measurement (GPM) snowfall product developers to understand and quantify the strengths and weaknesses of remote sensing techniques and precipitation estimation products. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available