4.5 Article

Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach

Journal

ENERGIES
Volume 15, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/en15197326

Keywords

integrated energy service provider; stochastic programing; Stackelberg game; demand response; interactive operation

Categories

Funding

  1. Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education [2022AA06]
  2. National Natural Science Foundation of China [51777126]

Ask authors/readers for more resources

This study proposes a two-stage stochastic hierarchical framework for energy pricing and management of integrated energy service providers (IESP), considering the demand response (DR) strategy of users, characteristics of energy storage, and uncertainties in electricity and gas wholesale prices. By transforming the model into a mixed-integer linear programming (MILP) problem, it can be easily solved using a commercial solver. The simulation results demonstrate the interaction between IESP and user agents through energy pricing, DR strategy, and energy management.
As a retailer between the energy suppliers and end users, the integrated energy service provider (IESP) can effectively coordinate the energy supply end and the energy use end by setting energy prices and energy management. Because most of the current research focuses on the pricing of electricity retailers, there are few studies on IESP energy pricing and management, which are still at the initial stage. At the same time, the existing research often does not consider the impact of demand response (DR) and uncertainties, such as natural gas and electricity wholesale prices, on the pricing of IESP. It is necessary to model the DR and uncertainties in the integrated energy system. Aiming at the inadequacy of the existing research and to address the energy pricing and management of IESP, this paper develops a two-stage stochastic hierarchical framework, which comprehensively considers the DR strategy of the user end, characteristics of the electricity/gas/heat storage and the uncertainties of electricity and gas wholesale prices. The proposed hierarchical model for energy pricing and management is a two-layer model: the upper layer is the problem of maximizing the benefits of IESP, and the lower layer is the problem of minimizing the energy cost of user agents. Through the complementary transformation, the linearization method and the strong duality principle in the optimization theory, the model is transformed into a mixed-integer linear programing (MILP) problem, which can be easily solved by the off-shelf commercial solver. Finally, the simulation results are provided to demonstrate the interactive operation between the IESP and user agent through energy prices setting, DR strategy and energy management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available