4.5 Review

CO2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment

Journal

ENERGIES
Volume 15, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/en15207805

Keywords

CO2 geological storage; CO2 sequestration; trapping mechanisms; storage capacity

Categories

Ask authors/readers for more resources

This review examines the consequences of the early and rapid deployment of carbon capture and storage (CCS) technologies, emphasizing the importance of geological storage as a short- to medium-term alternative for reducing carbon emissions. The paper also discusses global measurements of CO2 emissions and the significance of efficient energy usage, as well as various trapping processes and mechanisms.
This review focuses on the consequences of the early and rapid deployment of carbon dioxide (CO2) capture and storage (CCS) technologies, which is currently recognized as a critical problem in fulfilling climate change mitigation objectives and as a viable alternative for countries throughout the world. Currently, the geological storage of CO2 is the most effective and, in many cases, the only viable short- to medium-term alternative for considerably moving towards CO2 sequestration in geological sinks and, thus, lowering net carbon emissions into the atmosphere. Furthermore, this review explores the global and environmental measurements of CO2 emissions, as well as the emphasis behind more efficient energy usage. The components of the CCS system are briefly examined, with an emphasis on the technologies that have been developed by previous scholars to support carbon capture, as well as the kinds of carbon geological formations that are suitable sinks for CO2. Additionally, the importance of carbon interaction and sequestration in unconventional formations are examined through case studies that are applied to coalbed seams and shale gas reservoirs. Numerous trapping processes are grouped and introduced in a constructive matrix to easily distinguish the broad trapping mechanisms, which are (1) chemical, (2) physicochemical, and (3) physical trapping, and each of these categories are further classified in depth based on their contribution to CO2 storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available