4.7 Editorial Material

Filling an ARHGAP in our knowledge of human brain evolution

Journal

EMBO REPORTS
Volume 23, Issue 11, Pages -

Publisher

WILEY
DOI: 10.15252/embr.202256076

Keywords

-

Ask authors/readers for more resources

The human cerebral cortex has tripled in size since divergence from chimpanzees, driven by the increased proliferative capacity of radial glia. Studies suggest that the increased proliferative capacity of human NPCs involves cell-intrinsic mechanisms and human-specific genetic changes. The human-specific gene ARHGAP11B has been shown to increase basal progenitor abundance.
The human cerebral cortex has tripled in size since our divergence from a common ancestor with chimpanzees. This cortical expansion is driven by the increased proliferative capacity of radial glia (RG), a neural progenitor cell (NPC) population that generates cortical neurons. RG along the ventricular zone (VZ) produce neurons and also give rise to basal progenitors (BPs), which migrate to the embryonic subventricular zone (SVZ). Comparative studies suggest that the increased proliferative capacity of human NPCs involves cell-intrinsic mechanisms (Otani et al, 2016), and a number of human-specific genetic changes have recently been linked to NPC proliferation. In particular, overexpression studies in model organisms indicate that the human-specific gene ARHGAP11B is sufficient to increase BP abundance when introduced into the developing brain of non-human model organisms (Florio et al, 2015; Kalebic et al, 2018; Heide et al, 2020). However, studying human-specific mutations in a hominid genetic and developmental context, rather than in more divergent model organisms, could provide further insight into the evolutionary consequences and effect size of human mutations. Fischer et al (2022) now developed a novel organoid electroporation technique to establish the necessity and sufficiency of ARHGAP11B for BP proliferation in cells from humans and our closest living relative, chimpanzees (Fig 1).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available