4.8 Article

SPICE-Met: profiling and imaging energy metabolism at the single-cell level using a fluorescent reporter mouse

Journal

EMBO JOURNAL
Volume 41, Issue 19, Pages -

Publisher

WILEY
DOI: 10.15252/embj.2022111528

Keywords

energy; glycolysis; imaging; immunometabolism; OXPHOS

Funding

  1. CB_UTechS at Institut Pasteur
  2. Institut Pasteur, INSERM
  3. Vaccine Research Institute in Creteil, France
  4. European Research Council
  5. Swiss National Science Foundation
  6. Vaccine Research Institute

Ask authors/readers for more resources

SPICE-Met is a method for profiling energy metabolism in single cells using flow cytometry or imaging. It can infer the dependence of energy metabolism on oxidative phosphorylation and glycolysis, analyze immune metabolism, and dissect the heterogeneity and plasticity of energy metabolism in single macrophages.
The regulation of cellular energy metabolism is central to most physiological and pathophysiological processes. However, most current methods have limited ability to functionally probe metabolic pathways in individual cells. Here, we describe SPICE-Met (Single-cell Profiling and Imaging of Cell Energy Metabolism), a method for profiling energy metabolism in single cells using flow cytometry or imaging. We generated a transgenic mouse expressing PercevalHR, a fluorescent reporter for cellular ATP:ADP ratio. Modulation of PercevalHR fluorescence with metabolic inhibitors was used to infer the dependence of energy metabolism on oxidative phosphorylation and glycolysis in defined cell populations identified by flow cytometry. We applied SPICE-Met to analyze T-cell memory development during vaccination. Finally, we used SPICE-Met in combination with real-time imaging to dissect the heterogeneity and plasticity of energy metabolism in single macrophages ex vivo and identify three distinct metabolic patterns. Functional probing of energy metabolism with single-cell resolution should greatly facilitate the study of immunometabolism at a steady state, during disease pathogenesis or in response to therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available