4.8 Article

Cell-Membrane-Coated Synthetic Nanomotors for Effective Biodetoxification

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 25, Issue 25, Pages 3881-3887

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201501050

Keywords

biomimetics; gold nanowires; pore-forming toxin; red blood cells; ultrasound

Funding

  1. Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-13-1-0002, HDTRA1-14-1-0064]
  2. China Scholarship Council (CSC)
  3. EU 7th Framework Programme under REA [PIOF-GA-2012-326476]

Ask authors/readers for more resources

A red blood cell membrane-camouflaged nanowire that can serve as new generation of biomimetic motor sponge is described. The biomimetic motor sponge is constructed by the fusion of biocompatible gold nanowire motors and RBC nanovesicles. The motor sponge possesses a high coverage of RBC vesicles, which remain totally functional due to its exclusively oriented extracellular functional portion on the surfaces of motor sponge. These biomimetic motors display efficient acoustical propulsion, including controlled movement in undiluted whole blood. The RBC vesicles on the motor sponge remain highly stable during the propulsion process, conferring thus the ability to absorb membrane-damaging toxins and allowing the motor sponge to be used as efficient toxin decoys. The efficient propulsion of the motor sponges under an ultrasound field results in accelerated neutralization of the membrane-damaging toxins. Such motor sponges connect artificial nanomotors with biological entities and hold great promise for treating a variety of injuries and diseases caused by membrane-damaging toxins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available