4.7 Article

Cadmium exposure causes mitochondrial fission and fusion disorder in the pig hypothalamus via the PI3K/AKT pathway

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 242, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113880

Keywords

Cadmium; Hypothalamus; Mitochondrial dynamics; Apoptosis; Necroptosis; PI3K/AKT

Funding

  1. China Agriculture Research System
  2. National Key Research and Development Program of China [CARS-35-05B]

Ask authors/readers for more resources

Cadmium exposure leads to mitochondrial fusion and fission dysfunction in porcine hypothalamus, resulting in cell apoptosis and programmed necrosis.
Cadmium (Cd) is the main environmental pollutant causing endocrine and nervous system dysfunction in ani-mals. High doses of Cd cause cytotoxicity, including programmed necrosis and apoptosis, which has aroused widespread concern. Mitochondrial dynamics plays a key role in programmed necrosis and apoptosis of endo-crine organs. Nevertheless, there is a lack of information on the relationship between Cd-induced programmed necrosis/apoptosis of the hypothalamus and the mitochondrial fusion-fission balance. Therefore, a hypothalamic injury model of Cd exposure was established by adding 20 mg/kg CdCl2 to the basic pig diet for 40 days. Analysis of the Cd toxicity mechanism was conducted by inductively coupled plasma mass spectrometry, hematoxylin and eosin staining, the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and quanti-tative reverse transcription-polymerase chain reaction, as well as western blot analyses. The results suggested that exposure to Cd inhibited the expression of PI3K and AKT, interfered with the balance of mitochondrial fusion and division, downregulated the expression of Mfn2, Mfn1, and OPA1, and upregulated the expression of Drp1 and Mff, which led to cell apoptosis and programmed necrosis in the pig hypothalamus. This study finds that cadmium exposure leads to mitochondrial fission and fusion dysfunction in porcine hypothalamus via the PI3K/AKT pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available