4.7 Article

Modeling and insights into the structural basis of chemical acute aquatic toxicity

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 242, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113940

Keywords

Acute aquatic toxicity; Computational model; Physical -chemical property; Structural alert; SApredictor

Funding

  1. National Natural Science Foundation of China [81803433]
  2. Special Research project of Clinical Toxicology of Chinese Society of Toxicology [CST2020CT104]

Ask authors/readers for more resources

This study collected acute toxicity data for three representative aquatic species, developed artificial intelligence models based on the data, and achieved good performance on external validation sets. The study also identified structural alerts for aquatic toxicity, providing useful information for understanding the mechanisms of chemical aquatic toxicity.
It has become a top global regulatory priority to prevent and control pollution from the release of synthetic chemicals, which continues to affect the aquatic communities. In the past decades, computational tools were largely used to significantly reduce the budget and time cost of chemical acute aquatic toxicity assessment. But the structural basis of toxic compounds was rarely analyzed. In the present study, we collected 1438, 485 and 961 chemicals with acute toxicity data records for three representative aquatic species, including Tetrahymena pyriformis, Daphnia magna, and Fathead minnow, respectively. A series of artificial intelligence models were developed using OCHEM tools. For each aquatic toxicity endpoint, a consensus model was developed based on the top performed individual models. The consensus models provided good performance on external validation sets with total accuracy values 96.88 %, 90.63 %, and 84.90 % for Tetrahymena pyriformis toxicity (TPT), Daphnia magna toxicity (DMT), and Fathead minnow toxicity (FMT), respectively. The models can be freely accessed via https://ochem.eu/article/146910. Moreover, the analysis of physical-chemical properties suggested that several key molecular properties of aquatic toxic compounds were significantly different with those of non-toxic com-pounds. Thus, these descriptors may be associated to chemical acute aquatic toxicity, and may be useful for the understand of chemical aquatic toxicity. Besides, in this study, the structural alerts for aquatic toxicity were detected using f-score and frequency ratio analysis of predefined substructures. A total of 112, 58 and 33 structural alerts were identified responsible for TPT, DMT, and FMT, respectively. These structural alerts could provide useful information for the mechanisms of chemical aquatic toxicity and visual alerts for environmental assessment. All the structural alerts were integrated in the web-server SApredictor (www.sapredictor.cn).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available