4.8 Article

Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability

Journal

ECOLOGY LETTERS
Volume 25, Issue 10, Pages 2107-2119

Publisher

WILEY
DOI: 10.1111/ele.14071

Keywords

climate change; comparative study; convexity; demographic buffering; demographic lability; environmental variance; matrix population model; nonlinearity; stochasticity; temporal covariance

Categories

Funding

  1. Norges Forskningsrad [244404]

Ask authors/readers for more resources

This study decomposes stochastic growth rate into components arising from nonlinear responses and demographic parameters, to study the joint effects of buffering and lability. Results suggest that faster-living species are more responsive to environmental fluctuations and have a higher potential for adaptive demographic lability, while slower-living species predominantly rely on demographic buffering strategy.
Demographic buffering and lability have been identified as adaptive strategies to optimise fitness in a fluctuating environment. These are not mutually exclusive, however, we lack efficient methods to measure their relative importance for a given life history. Here, we decompose the stochastic growth rate (fitness) into components arising from nonlinear responses and variance-covariance of demographic parameters to an environmental driver, which allows studying joint effects of buffering and lability. We apply this decomposition for 154 animal matrix population models under different scenarios to explore how these main fitness components vary across life histories. Faster-living species appear more responsive to environmental fluctuations, either positively or negatively. They have the highest potential for strong adaptive demographic lability, while demographic buffering is a main strategy in slow-living species. Our decomposition provides a comprehensive framework to study how organisms adapt to variability through buffering and lability, and to predict species responses to climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available