4.7 Article

A scalable phenotyping approach for female floral organ development and senescence in the absence of pollination in wheat

Journal

DEVELOPMENT
Volume 149, Issue 18, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.200889

Keywords

Carpel development; Machine learning; Stigma; Ovary; Wheat; Hybrid breeding

Funding

  1. Biotechnology and Biological Sciences Research Council, UK [BB/P016855/1, BB/P013511/1]
  2. European Research Council [ERC-2019-COG-866328]
  3. Royal Society [UF150081]
  4. Biotechnology and Biological Sciences Research Council (BBSRC) Norwich Research Park Biosciences Doctoral Training Grant [BB/M011216/1]
  5. University of Adelaide

Ask authors/readers for more resources

A high-throughput phenotyping approach was developed to quantify stigma and ovary morphology in wheat. The study revealed a well-defined developmental process of unpollinated carpels, which is important for understanding female fertility in wheat.
In the absence of pollination, female reproductive organs senesce, leading to an irrevocable loss in the reproductive potential of the flower, which directly affects seed set. In self-pollinating crops like wheat (Triticum aestivum), the post-anthesis viability of unpollinated carpels has been overlooked, despite its importance for hybrid seed production systems. To advance our knowledge of carpel development in the absence of pollination, we created a high-throughput phenotyping approach to quantify stigma and ovary morphology. We demonstrate the suitability of the approach, which uses light-microscopy imaging and machine learning, for the analysis of floral organ traits in field-grown plants using fresh and fixed samples. We show that the unpollinated carpel undergoes a well-defined initial growth phase, followed by a peak phase in which stigma area reaches its maximum and the radial expansion of the ovary slows, and a final deterioration phase. These developmental dynamics were consistent across years and could be used to classify male-sterile cultivars. This phenotyping approach provides a new tool for examining carpel development, which we hope will advance research into female fertility of wheat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available