4.4 Article

Metabarcoding of fecal DNA reveals the broad and flexible diet of a globally endangered bird

Journal

CURRENT ZOOLOGY
Volume 69, Issue 5, Pages 501-513

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cz/zoac071

Keywords

Arborophila rufipectus; dietary composition; endemic endangered species; molecular diet analysis; seasonal dietary variation; Sichuan partridge

Categories

Ask authors/readers for more resources

Understanding the diet and seasonal changes of the Sichuan partridge is crucial for species-specific conservation and habitat management, as well as the preservation of the plant species in its habitat.
Knowing the diet of endangered wild animals is a prerequisite for species-specific conservation and habitat management. The Sichuan partridge Arborophila rufipectus is a globally endangered Galliformes species endemic to the mountains of southwest China. Existing information on the diet of this species is biased and fragmented owing to traditional observation methods. Little is known about their dietary composition or how they respond to temporal variations in food resources throughout the year. In this study, a dietary analysis was performed on 60 fecal samples using DNA Metabarcoding of invertebrates and plants to determine the primary animal and plant components of the diet across 3 critical periods of adult life history (breeding, postbreeding wandering, and overwintering). Preys from the dipteran order, followed by the lepidopteran and araneaen spp., were the predominant, animal-derived foods. Symplocos, Rubus, Celastrus, Holboellia, and Actinidia spp. supply a large abundance of fruits and seeds for this omnivorous bird. Substantial temporal dietary changes among the 3 periods and a general shift toward lower dietary diversity during the breeding season were observed, suggesting that the Sichuan partridge can adjust their diet according to the availability of food resources and their own needs. Characterizing the composition and seasonal changes in Sichuan partridge diets informs the habitat management of native flora (the plant taxa that can generate berries and seeds, such as Symplocos, Rubus, Celastrus, and Holboellia, which are likely of conservation interest) to achieve full life-cycle conservation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available