4.7 Article

Predicting mechanically ventilated patients future respiratory system elastance-A stochastic modelling approach

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 151, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.106275

Keywords

Mechanical ventilation; Respiratory mechanics; Patient -specific; Stochastic model; Respiratory elastance

Ask authors/readers for more resources

This research developed two stochastic models for respiratory mechanics in mechanically ventilated patients, improving prediction accuracy and range. Clinical validation showed high accuracy in predicting future respiratory elastance data. These models can potentially be used in decision support systems for guided and personalized mechanical ventilation treatment.
Background and objective: Respiratory mechanics of mechanically ventilated patients evolve significantly with time, disease state and mechanical ventilation (MV) treatment. Existing deterministic data prediction methods fail to comprehensively describe the multiple sources of heterogeneity of biological systems. This research presents two respiratory mechanics stochastic models with increased prediction accuracy and range, offering improved clinical utility in MV treatment. Methods: Two stochastic models (SM2 and SM3) were developed using retrospective patient respiratory elastance (Ers) from two clinical cohorts which were averaged over time intervals of 10 and 30 min respectively. A stochastic model from a previous study (SM1) was used to benchmark performance. The stochastic models were clinically validated on an independent retrospective clinical cohort of 14 patients. Differences in predictive ability were evaluated using the difference in percentile lines and cumulative distribution density (CDD) curves. Results: Clinical validation shows all three models captured more than 98% (median) of future Ers data within the 5th - 95th percentile range. Comparisons of stochastic model percentile lines reported a maximum mean absolute percentage difference of 5.2%. The absolute differences of CDD curves were less than 0.25 in the ranges of 5 < Ers (cmH2O/L) < 85, suggesting similar predictive capabilities within this clinically relevant Ers range. Conclusion: The new stochastic models significantly improve prediction, clinical utility, and thus feasibility for synchronisation with clinical interventions. Paired with other MV protocols, the stochastic models developed can potentially form part of decision support systems, providing guided, personalised, and safe MV treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available