4.6 Article

Early life-stage Deepwater Horizon crude oil exposure induces latent osmoregulatory defects in larval red drum (Sciaenops ocellatus)

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpc.2022.109405

Keywords

Deepwater Horizon; Osmoregulation; Red drum; Kidney; Crude oil

Funding

  1. Gulf of Mexico Research Initiative [SA-1520]
  2. Cristina and Charles Johnson Foundation

Ask authors/readers for more resources

Crude oil exposure may lead to developmental defects and transcriptional changes in the kidney of fish. Experimental exposure of red drum larvae showed reduced survival in hypoosmotic waters and altered transcription of kidney-related genes.
Crude oil is known to induce developmental defects in teleost fish exposed during early-life stages (ELSs). A recent study has demonstrated that zebrafish (Danio rerio) larvae acutely exposed to Deepwater Horizon (DHW) crude oil showed transcriptional changes in key genes involved in early kidney (pronephros) development and function, which were coupled with pronephric morphological defects. Given the osmoregulatory importance of the kidney, it is unknown whether ELS effects arising from short-term crude exposures result in long-term osmoregulatory defects, particularly within estuarine fishes likely exposed to DWH oil following the spill. To address this knowledge gap, an acute 72 h exposure to red drum (Sciaenops ocellatus) larvae was performed using high-energy water-accommodated fractions (HEWAFs) of DWH weathered oil to analyze transcriptional changes in genes involved in pronephros development and function by quantitative PCR. To test the latent effects of oil exposure on osmoregulation ability, red drum larvae were first exposed to HEWAF for 24 h. Larvae were then reared in clean seawater for two weeks and a 96 h acute osmotic challenge test was performed by exposing the fish to waters with varying salinities. Latent effects of ELS crude oil exposure on osmoregulation were assessed by quantifying survival during the acute osmotic challenge test and analyzing transcriptional changes at 14 dpf. Results demonstrated that ELS crude oil exposure reduced survival of red drum larvae when challenged in hypoosmotic waters and that latent transcriptional changes in some target pronephric genes were evident, indicating that an affected kidney likely contributed to the increased mortality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available