4.7 Article

Plant association with dark septate endophytes: When the going gets tough (and stressful), the tough fungi get going

Journal

CHEMOSPHERE
Volume 302, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.134830

Keywords

Abiotic stress; Drought; DSE; Heavy metals; Melanin; Salinity

Funding

  1. National Science Centre in Poland [2017/25/N/NZ8/01676]

Ask authors/readers for more resources

Dark septate endophytes (DSEs) are a group of fungi that colonize the roots of plants in stressful environments, and they possess adaptation strategies to tolerate heavy metal contamination, drought, and salinity. They form mutualistic relationships with plants, improving plant growth and physiology. Additionally, DSEs can improve soil quality and aid in phytoremediation of contaminated soils.
Dark septate endophytes (DSEs) comprise a diverse and ubiquitous group of fungal generalists with broad habitat niches that robustly colonize the roots of plants in stressful environments. DSEs possess adaptation strategies that determine their high tolerance to heavy metal (HM) contamination, drought, and salinity. Most DSEs developed efficient melanin-dependent and melanin-independent mechanisms of HM detoxification and osmoprotection, including intracellular immobilization and extracellular efflux of HMs and excess ions, and the scavenging of reactive oxygen species. DSEs form mutualistic relationship with plants according to the hypothesis of habitat adapted associations, supporting the survival of their hosts under stressful conditions. As saprophytes, DSEs mineralize a complex soil substrate improving plants' nutrition and physiological parameters. They can protect the host plant from HMs by limiting HM accumulation in plant tissues and causing their sequestration in root cell walls as insoluble compounds, preventing further HM translocation to shoots. The presence of DSE in drought affected plants can substantially ameliorate the physiology and architecture of root systems, improving their hydraulic properties. Plant growth-promoting features, supported by the versatility and easy culturing of DSEs, determine their high potential to enhance phytoremediation and revegetation projects for HM-contaminated, saline, and desertic lands reclamation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available